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On the Twin and Cousin PrimesMarek WolfInstitute of Theoretical Physics, University of Wroc lawPl.Maxa Borna 9, PL-50-204 Wroc law, Polande-mail: mwolf@ift.uni.wroc.plAbstractThe computer results of the investigation of the number of pairs of primesseparated by gap d = 2 (\twins") and gap d = 4 (\cousins") are reported.The number of twins and cousins turn out to be is almost the same. Theplot of the function W (x) giving the di�erence of the number of twins andcousins for x 2 (1; 1012) is presented . This function has fractal propertiesand the fractal dimension is approximately 1.48 | what is very close to thefractal dimension of the usual Brownian motion. The set of primes, up towhich the numbers of twins and cousins are exactly the same seems to havethe fractal structure. The box-counting method gives the fractal dimension ofthis set approximately 0.51. The statistics of distances between primes beingthe zeros of W (x) display the cross-over from the exponential decrease to thepower like dependence with the exponent equal 1.48. Arguments that W (x)has the same properties as a typical sample path of the random walk are given.The analog of the Brun's constant is de�ned for cousins.



2 Marek Wolf1. In the paper [1] Hardy and Littlewood have proposed about 15 conjectures.The conjecture B of their paper states1:There are in�nitely many primes pairsp; p0 = p+ d; (1)for every even d. If �d(x) is the number of pairs less than x, then�d(x) � c2 xln2(x)Ypjd p � 1p � 2 : (2)Here the constant c2 (sometimes called \twin{prime " constant, see [3]) is de�nedin the following way: c2 � 2Yp>2�1 � 1(p� 1)2� = 1:32032 . . . (3)Nobody has proved as yet (2), even there is no proof that there is in�nity of twin(d = 2) primes. The largest twins known o�cially are:697053813 � 216352 � 1 (4)found recently by Indlekofer and Jarai, [2]. The pairs of primes separated by d = 2and d = 4 are special as they always have to be consecutive primes (with exceptionof the pair (3,7) containing in the middle 5) and for d � 6 the function �d(x) countsall pairs p; p0 = p + d, not necessarily successive. On the page 43 of [1] Hardy andLittlewood wrote: Thus there should be approximately equal numbers prime-pairsdi�ering by 2 and 4, but twice as many di�ering by 6. In this paper I am going topresent the results of the computer study of the behavior of �d(x) for d = 2 andd = 4 and, in particular, of the set of such x for which the equality �2(x) = �4(x)holds. By analogy with twins I will call pairs p; p + 4 cousins.2. Hardy and Littlewood have said nothing about the error terms in (2). Underthe assumption of the Riemann Hypothesis, the Prime Number Theorem (PNT)was proved in the form: �(x) = Li(x) +O(px ln(x)); (5)where the logarithmic integral is de�ned by;Li(x) = Z x2 duln(u); (6)1I have changed notations to modern ones.



On the Twin and Cousin Primes 3and one can expect similar error terms in (2). But it turns out that the computersearch up to N = 244 shows that the relation�2(x) � �4(x)�� c2xln2(x)� (7)holds with much higher accuracy than can be expected from the analogy with PNT.The relation (7) is well satis�ed already for small values of x | it holds not neces-sarily assymptotically for large x. The table I shows the values of the numbers oftwins and cousins captured during the computer scan at the values of N forming thegeometrical progression N = 218; 220; . . . ; 244. The di�erences between the numbersof twins and cousins are much smaller than pN .TABLE 1The numbers of twins (d = 2) and cousins (d = 4).N �2(N) �4(N) �2(N)=�4(N)218 2679 2678 1.00037220 8535 8500 1.00412222 27995 27764 1.00832224 92246 91995 1.00273226 309561 309293 1.00087228 1056281 1057146 0.99918230 3650557 3650515 1.00001232 12739574 12740283 0.99994234 44849427 44842399 1.00016236 159082253 159089620 0.99995238 568237005 568225073 1.00002240 2042054332 2042077653 0.99999242 7378928530 7378989766 0.99999244 26795709320 26795628686 1.000003. To measure the discrepancy between the number of twins and cousins I willuse the function W (x) = �2(x)� �4(x): (8)The character W was introduced here because the plot of (8) resembles the fractalWeierstrass-Mandelbrot W (x) functions [4], [5] or the Brownian motion, that is alsooften denoted by W (x). The function W (x) is piecewise constant, because �d(N)can change values only for N being the prime. The Fig.1 shows the plot of W (x)in the range x 2 (1; 1012). The argument is shown on the logarithmical x-axis. Thecomparison of three parts (a), (b) and (c) of Fig.1 reveals a self{a�nity of W (x):left parts starts with oscillations of relatively small amplitudes and they increase atright parts (�gures (a), (b) and (c) have increasing scales on the y-axis). Let meremark that, if instead of using the logarithmic scale, the x-axis would be drawn lin-early with the same yardstick as the vertical axis on the original of Fig. 1(c), where



4 Marek Wolfthe interval (0, 25000) had the length 11 cm, then the total plot for 1 � x � 1012should be 4400 km long! It took over 9 days of CPU time on the DEC 3000/800200MHz workstation to produce the data for Fig.1.4. As it is seen from the Table 1 the ratio �2(N)=�4(N) is sometimes larger than1, and for other N is smaller than 1. It means that there is a set of such x thatthe numbers of Twins and Cousins are equal, so it is reasonably to look for zerosetof the function W (x). Because �d(x) changes value only at x being prime, I havelooked for such primes p(z) at which the numbers of twins or cousins are the same:T (x) = fp(z) < x :W (p(z)) = 0g: (9)and let �z(x) = number of p(z) < x such that W (p(z)) = 0. The direct computersearch shows that up to N = 243 � 8:8�1012 there are 2823290 such primes p(z) thatW (p(z)) = 0 holds. First the same number of twins and cousins appears between101 and 103 (besides the trivial zeros 2 and 3, when �2(x) = 0 and �4(x) = 0). Thelargest captured zero below 243 was 8205034088567 � 242:899646. On the Fig.1(a)there are 2334 zeros, on (b) W (x) touches x-axis 13019 times and in (c) there were1035496 prime zeros of W (x). In the Table 2 the numbers of primes p(z) up to 1013every one order of magnitude are given. The values of �z(x) in this table displayrather large 
uctuations however using the analogy with random walk (see nextparagraphs) one can expect that the �z(x) is of the same order as the number ofvisits of random walk to the origin. As it is well known, see e.g. [6], the averagenumber of returns of the random walk to the origin during n steps ispn=�, I guessthat: �z(x) �px=� (10)The comparison of this formula with the actual data is provided on the �gure Fig.2.Of course it is not obvious that there is in�nity of p(z).TABLE 2The values of the function �z(x) giving the number of primes p(z) < x ful�llingW (p(z)) = 0.x �z(x)1000 3110000 60100000 5921000000 233210000000 2332100000000 47181000000000 1535110000000000 68440100000000000 2785031000000000000 178779310000000000000 2823290



On the Twin and Cousin Primes 54. The interesting information about the structure of the set T (x) can be ob-tained from the distribution DN (�z) of spacings �z between consecutive p(z) < NDN (�z) = number of consecutive p(z); p(z0) < Nsuch that p(z0) � p(z) = �z (11)The plot of DN (�z) is shown on the Fig.3. It should be stressed that on thex-axis up to �z = 360 there is a linear scale, while for larger �z the scale islogarithmic. There are 2790362 spacings shown on this �gure | only 32927 distancesbetween consecutive p(z) were larger than 104. In fact these larger distances havevery scattered values (the largest gap between two clusters of the same numbers oftwins and cousins was 314267840234) and they appeared only once | it resemblesthe intermittent behaviour in some dynamical systems. There is a cross-over fromthe exponential dependence of DN (�z) to the power-like decrease starting at around�z = 360. In the power like-regime all �z were multiplicities of 6: �z = 6n (seebelow), while on the left part there appeared arbitrary even gaps �z = 2; 4; 6; . . . 358and local jumps are for �z = 6n.The two-type functional dependence of DN (�z) means that the set of p(z) isformed by \clusters" separated by distances obeying the power law. The �rst ele-ments of these clusters are characterized by the equationW (p(z)) = 0 ^W (p(z) � 1) 6= 0 (12)and the ends of clusters satisfy:W (p(z)) 6= 0 ^W (p(z) � 1) = 0: (13)Inside \clusters" the values of �2(x) and �4(x) do not change their values and areequal each other. So for p(z) inside clusters the dependence of DN (�z) is the sameas the dependence of the number of gaps between consecutive primes. Because the�rst part (up to �z < 360) of the plot of DN (�z) in the Fig.3 has the x-axis linearand y-axis logarithmic, one expects exponential decrease. It is really the case, asthe functionhN (d) = number of pairs pn; pn+1 < N with d = pn+1 � pn: (14)decreases exponentially with d:hN(d) � c2Nln2(N) Ypjd;p>2 p � 1p � 2e�d= ln(N); (15)see [7]. Exactly the product in (15) is responsible for jigsaw pattern overimposedonto the exponential decreasing in the quite left part of Fig.3. On the contrary, thenumber of spacings �z > 360 (this threshold 360 is for N = 243) decrease in thepower{like manner: DN (�z) � (�z)�
: (16)



6 Marek WolfIt means that the \clusters" (or \islands") of such x that �2(x) = �4(x) are organizedin a hierarchical, selfsimilar set. The power{like dependences are characteristic forfractal sets [4]. The exponent 
 in the power{like part DN (�z) has the value of
 � 1:48 and it appears that this \critical exponent" does not depend on N , see theplot for N = 237 on the Fig.3 (the plots of DN (�z) for other values of N displaythe same slope, but I did not plot them because they overlap). Since this index
 does not depend on N , it can be regarded as the fractal dimension of the curverepresented by W (x) [8].However, in the region �z 2 (z0; 360), where z0 is roughly 120 for N = 243,the two behaviors overlap and it causes big `jumps' of the values of DN (�z) at�z = 6n < 360; for distances larger than 360 only multiplicities of 6 appears (alltwins are of the form 6n � 1, where n are not necessary consecutive integers). Butit is a little bit di�cult to split the values of DN (�z) into the part arising from thedistribution of gaps between consecutive primes and distances between \clusters" ofprimes at which W (p(z)) = 0 holds.There is an open question what is the functional form of the prefactor, dependingon N , in (16). This prefactor is connected with the form of �z(x) by the followingselfconsistency equation: X�z DN (�z) = �z(N): (17)5. Another argument for the fractal structure of the set fp(z)g is supplied bycalculation of the Haussdorf dimension [4]. I have used the direct box-countingmethod. Namely the whole interval (1; 243) was covered by consecutive intervalsof the length l = 16 and the number N(l) of \boxes" containing primes p(z) wascalculated. This procedure was successively repeated for lengths two times larger,up to l = 239 � 5:5� 1011. The obtained values of N(l) are plotted in the Fig.4 onthe double logarithmic axes. The large linear part in the middle tells us that:N(l) � l�Dfr ; Dfr � 0:509 (18)where Dfr is the fractal dimension of T (x), see e.g. [4]. I have calculated Dfr by�tting the straight line to points for l = 212; . . . 233. There is a surplus of small boxescaused by the cluster{like organization of the set T (x): short boxes grasp separateprimes at which W (x) is not changing value (equal 0). In other words, there is aminimal length (depending on x), below which T (x) is not a fractal: the small boxesintersect with zeros of W (x) which are inside \clusters". The fractal, selfsimilar hi-erarchy is formed only by primes p(z) marking the beginning or the end of clustersand those are distinguished by conditions (12) and (13), respectively. Because thelargest cluster encountered during the computer search had the length 358, boxeswith l > 1024 follow perfectly the power{like dependence: they contain the clusterstotally inside. Let us notice, that an approximate relation 
 = Dfr+1 holds, see [4].6. In 1919 Brun [9] has shown that the sum of the reciprocals of all twin primes



On the Twin and Cousin Primes 7is �nite: B2 = �13 + 15�+�15 + 17�+� 111 + 113�+ . . . <1: (19)The numerical estimations give [11]B = 1:9021605 . . .. The sum of the �nite numberof terms in (19) B2(x) = Xp twin;p<x 1p (20)gives the �nite approximations to the constant B2. Probabilistic arguments showthat [10]: B2(x) = B2 � 2c2ln(x) : (21)By analogy the appropriate constant for cousins can be de�ned:B4 = �17 + 111�+� 113 + 117�+� 119 + 123�+ . . . : (22)The reasoning of Brent applies mutatis mutandis to the cousins and:B4(x) = Xp cousin;p<x 1p = B4 � 2c2ln(x) (23)I have calculated on the computer the �nite approximations B2(N) and B4(N) upto N = 242. The intermediate values were stored at N = 222; 223; 224; . . . ; 242 andobtained values are plotted versus 1= ln(N) on the Fig.5. On this plot the pointsreally are lying on the straight lines. As predicted by (21) and (23), the two lines onthe Fig.5 are practically parallel with slope 2:6399 for twins and 2.6401 for cousins(2c2 � 2:64064). The value of the \cousin"{ Brun constant estimated from (23),where B4(242) = 1:1063389965796880, is B4 = 1:1970449 . . .7. One can ask a lot of questions on the structure of the set T (x). Is this setin�nite? What is the measure of this set up to a given x? How grows with x thelargest distance between two consecutive clusters of p(z). Are there arbitrarily largevalues of the function W (x)? More precisely, does there exist for every M > 0 suchxM that j �2(xM)� �4(xM) j> M? (24)Maybe answers to the above questions can be obtained by exploiting the analogybetween primes and Brownian motion [12]. Namely, the plot of W (x), see Fig.1,resembles the sample path of random walk. The graph of usual random walk has thefractal dimension 1.5 and it is very close to the dimensions of W (x) estimated viabox { counting method and from the histogram of spacings �z. Also the graph 2con�rms, thatW (x) behaves as the typical realization of the random walk. However,for usual random walk the steps are made at every instant of time, while W (x) ispiecewise constant. Maybe W (x) is a projection of a higher dimensional randomwalk, which performs steps at every instant of time, onto the one of coordinates?Acknowledgment: The author receives support from the KBN research grantNo 2 P302 057 07
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On the Twin and Cousin Primes 9

Fig.1 The function W (x) is plotted in the range x 2 (1; 106) in the part (a), forx 2 (106; 109) in (b) and for x 2 (109; 1012) in (c). The range of values on the y-axischanges in each case. Up to x = 5�106 all arguments x are plotted | for argumentslarger some decimation procedure was employed. Namely for W (x) > 100 onlychanges of values larger than 8% were recorded, while smaller values of the functionW (x) were updated only after changes larger than 30%. There are 16314 points in(a) plotted.
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Fig.2 The plot showing the actual dependence of �z(x) on x. The straight linerepresents the plot of px=� | the conjectured dependence of the �z(x).



On the Twin and Cousin Primes 11

Fig.3 The plot showing the dependence of the distribution DN (�z) of spacings �zbetween consecutive p(z) < 243. There is a logarithmic scale on the y-axis , whileon the x-axis there is a linear scale up to �z = 360 while for larger �z the scale islogarithmic. There is also the power-like part of DN (�z) for N = 237 shown andfor this case the slope is 
 � 1:47.
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Fig.4 The plot showing the dependence of the distribution N(l) vs l. There is alogarithmic scale on the x and y-axis.
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Fig.5 The plot showing the dependence of the �nite approximations to the Brunconstant for twins (circles) and cousins (squares). On the horizontal axis values of1= ln(N) are used.


