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Abstract

The one-dimensional random walk (RW), where steps up and down are performed according to
the occurrence of special primes, is defined. Some quantities characterizing RW are investigated.
The mean fluctuation func:ion F(/) displays perfect power-law dependence F{/)~ I'"? indicating
that the defined RW is not correlated. The number of returns of this special RW to the origin
is vestigated. It turns out that this single, very special, realization of RW is a typical one
in the sense that the usuzl characteristics used to measure RW, take values close to the ones
averaged over afl random walks. This fact suggests that random numbers of good quality could
be obtained by means of RW on prime numbers. The fractal structure on the subset of primes
is also found. © 1998 Elsevier Science B.V. All rights reserved.
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In 1973 Bilingsley published the paper “Prime Numbers and Brownian Motion™ [1],
where he defined the set of random walks (RW) employing the factorization of integers
into the primes. In this paper we are going to define even simpler RW on the primes,
which uses special families of primes. Namely, among the primes the subset of Twin
primes is distinguished: Twins are such numbers { p, p’} that both p and p’ = p+2 are
prime. So the set of Twins starts with (3, 5), (5, 7). (11, 13), (17, 19), (29, 31),....
It is not known whether there is an infinity of Twins; the largest pair of Twins known
today was found recently by Indlekofer and Jarai [2]:

697053813 x 2'6352 + 1. (1)

Let us notice that these same authors have announced on the Internet the much larger
pair of Twins: 242206 083 x 238880 1,

The mathematicians are using the notation (V) to denote the number of Twins
smaller than N. The next possible gap (after 2) between consecutive primes is 4 and we
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Table 1

The numbers of Twins (d =2) and Cousin (d =4) up to N =218, N =220 N =24

N 72(N) my(N) (N )/ma(N)
218 2679 2678 1-00037
220 8535 8500 1.00412
22 27995 27764 1.00832
22 92246 91995 1.00273
2% 309561 309293 1.00087
2% 1056281 1057 146 (.99918
230 3650557 3650515 1.00001
232 12739574 12 740283 0.99994
234 44849427 44842399 1.00016
236 159082253 159 089 620 0.99995
2% 568237005 568225073 1.00002
240 2042054332 2042077653 0.99999
24 7378928530 7378 989 766 0.99999
24 26795 709 320 26795 628 686 1.00000

will use the name Cousins to denote such numbers {p, p'} that both p and p'= p+4
are prime, Examples of Cousins are (7, 11), (13, 17), (37, 41),... . The function m4(N)
will denote the number of Cousins smaller than N. The pairs of primes separated by
d =2 and d =4 are special as they always have to be consecutive primes, with the
exception of the pair (3,7) containing 5 in the middie — for primes p, p+ 2k separated
by gaps with k>3 there is a possibility to have primes in between. For example, for
k=3 it is possible to have between p, p + 6 the prime either of the form p + 2 or
p+4: triplets (7, 11, 13) or (41, 43, 47) serve as examples.

In Ref. [3] Hardy and Littlewood have conjectured, that the number of Twins and
Cousins below a given bound N should be approximately equal to each other and given
by the approximate formula:

CzN
In*(N)’
where d =2,4. Here the constant ¢, (sometimes called “twin-prime” constant) is de-
fined in the following way:

a=2]] (1 - 5-1_1)2> =1.32032.... (3)

na(N)~ (2)

But it turns out that the computer search up to N = 2% shows that the relation
T(N) = 14(N) (4)

is well satisfied already for small values of N — it holds not necessarily asymptot-
ically for large N. Table 1 shows the values of the numbers of Twins and Cousin
captured during the computer scan at the values of N forming the geometrical pro-
gression N =2!8220 2% Because Twins and Cousin seems to appear randomly
and the number of occurrences of them is almost the same, we can define the one-
dimensional random walk in the following way: Let us move along consecutive integers
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1,2,3,4,.... If we mest the pair of Twins, then the random walker makes the step
say up and if the pair of Cousin is encountered, then the step down is performed. 1
will use the abbreviation PRW to denote this special random walk on the primes. The
similarity with the random walk defined by the structure of DNA sequences [4] can be
mentioned at this point. If there is infinity of Twins and Cousin (as suggested by the
Hardy — Littlewood conjecture), then the PRW defined above will continue to perform
steps forever, in contrast to RW considered in Ref. [1] or Ref. [4], where random
walks were finite.

Let y(V) denote the displacement of the random walker after N steps, hence ¥(N)
represents the function:

YN)=m(N) — nq(N). (5)

The function y(N) is piecewise constant, because 74(N) can change values only for
N being the prime. The Fig. | shows the plot of y(N) in the range N € (1,10'?). The
argument is shown on the logarithmical N-axis. The comparison of three parts (a), (b)
and (c¢) of Fig. 1 reveals a self-affinity of y(N): left parts starts with oscillations of
relatively small amplitudes and they increase at right parts (Figs. la—c have increasing
scales on the y-axis). let me remark that, if instead of using the logarithmic scale,
the x-axis would be drawn linearly with the same yardstick as the vertical axis on the
original of Fig. Ic, where the interval (0, 25000) had the length 11 cm, then the total
plot for 1 <N < 10" should be 4400km long! It took over 9 days of CPU time on the
DEC 3000/800 200 MHz workstation to produce the data for Fig. 1.

The main question on the defined above PRW is whether the consecutive steps are
correlated or not. In other words: do the appearance of a Twin or Cousin depend on
the previous history? The standard answer to this question is obtained by calculation
of the mean square fluctuation F(/) about the average of the displacement, [4,5]. The
function F (/) is defined by the equation:

FA(1) = {(Ay(D)Y) — (A, (6)

where Ay(l)= y({+ {p) — ¥(ly) and the average is performed over all starting points
Iy in the random walk. For the usua! random walk the function F(/) is described by
the power law:

F(hy~1*. (7)

with the exponent % = % The exponents oc;é% characterize the walks that display long-
range correlations between consecutive steps: positive for oc>% (it means that if, say
step up was performed, then it is more likely to perform again the step up), and
negative for a < %, see e.g. Ref. [5]. This function F(!) was used in the past to reveal
the long-range correlations in the DNA sequences [4].

In principle, the relation of the form (7) holds in the limit of infinitely long walks,
but in practice only finite-step RW are observed. We have generated the PRW up to
N =255 x 10'". Bzcause PRW performs steps only at Twins or Cousins, the values
of lp were not consecutive integers, but were chosen as multiplicities of 64 (it was
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Fig. 1. The function p(N) is plotted in the range N € (1,10°) in part (a), for N € (10°,10%) in (b) and
for N €(10°,10'7) in (c). The range of values on the y-axis changes in each case. Up to N =5 X% 106 all
arguments N are plotted — for arguments larger some decimation procedure was employed. Namely, for
v(N)> 100 only changes of values larger than 8% were recorded, while smaller values of the function ¥(N)
were updated only for changes larger than 30%. This procedure causes that there are approximately 31000
points in part (a), 150 000 points in part (b) and 250 000 points in part (c), while the total number of Twins
and Cousins was in fact much larger (see Table 1). Let me remark that if the x-axis would be drawn with
the same yardstick as the vertical axis, then it should be 4400 km long.
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Fig. 2. The plot of finite approximations to F(/) for N =228, 232 23 23 The curves converge for increasing
N to the asymptotic plot for N = oc.
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Fig. 3. The plot of the slope x(N) calculated from the partial functions F({).

caused by the 64-bit architecture of DEC Alpha processor on which all programs were
run). The function F(/) was calculated at discrete set of lengths /=16,32,64,...,2!8 =
262 144. The partial approximations of the function F(/) were stored at N =228,22% |
23% (the number of diflerent /;, used for averaging was N/64). The plot of the F(/)
for a sample of N is plotted on the double logarithmic scale in Fig. 2. The partial
approximates converge with increasing N to the limiting curve. The dependence of
the exponent %(N) on the number of steps N is shown in the Fig. 3. After the initial
increase from 0.46 for N =228 to 0.49 for N = 2% the exponent x(N ) begins to fluctuate



340 M. Wolf! Physica A 250 (1998) 335-344

Table 2
The values of the function m:(NV) giving the number of primes
P <N fulfilling p(p) =10

N m:(N)
1000 31
10 000 60
100 000 592
1 0600 000 2332
10 000 000 2332
100 000000 4718
1000 000000 15351
10 000 000 000 68440
100 000 000 000 278503
1 000 000 000 000 1787793
10 600 000 000 000 2823290

around the value 0.49. Such very close to 0.5 values of z indicate that PRW does not
display correlations.

Another quantity characterizing RW is the number of returns to the origin see e.g.
Ref. [6]. The returns to the origin happens when y(N)=0 and let .7 (N) denote the
set of such primes p®) at which the numbers of Twins and Cousin are the same:

T(N)={p@ <N:y(p¥)=0}. (8)

The direct computer search shows that up to N =2% ~ 8.8 x 10!2 there are 2823290
such primes p'®) that y(p“?)=0 holds. First the same number of Twins and Cousin
appears between 101 and 103 (besides the trivial zeros 2 and 3, when 72(N)=0 and
74(N)=0). The larzest captured zero below 2% was 8 205 034 088 567 & 242899636 On
the Fig. la there arz 2334 zeros, on (b) y(N) touches x-axis 13019 times and in (c)
there were 1035496 prime zeros of y(N).

Let

mAN) = {number of p°' <N such that y(p“')=0} (9)

denote the number of returns to the origin of PRW defined by Eq. (5). In Table 2 the
numbers of primes p*) up to 10'% every one order of magnitude are given. The values
of 7.(N) in this table display rather large fluctuations however using the analogy with
random walk one can expect that the 7,(¥) is of the same order as the number of
visits of usual random walk to the origin. It is well known, see e.g. Ref. [6], that in
one dimension the average number of returns of the random walk to the origin during
n steps is \/;/E and we can expect that

(N) ~ A/ Nir . (10)

The comparison of this formula with the actual data is provided in Fig. 4. Taking into
account the fact that theoretical prediction \/n/7 holds for the number of returns of
RW to the origin ¢veraged over many samples, and the PRW defined on the primes
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Fig. 4. The plot of the number of returns to the origin of the PRW. The straight line represents the plot of
v/ N/r ~ the conjectured dependence of the 7 ().
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Fig. 5. The plot showing the dependence of the number of returns to the origin of the usual RW of size
comparable to the number of returns in Fig. 4.

by Eq. (5) is only one, particular realization of RW, the agreement seems to be quite
well. For the comparison in the Fig. 5, we have plotted the numbers of returns to
the origin of two realizations of the usual RW in one-dimension. The simulation was
stopped when the number of returns to the origin was comparable to the number of p
for the case of PRW: the two plots in Fig. 5 represent 2826062 and 2 770 354 returns
to the origin and they consisted of over 4.9 x 10'? and 1.06 x 10'* steps respectively.
To gencrate RW of length ~ 10'% steps in reasonable time we have used the random
bits generators based on primitive polynomials modulo 2, see Ref. [7].
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Fig. 6. The plot showiig the dependence of the number of boxes M(/) as a function of length / for
1=16,32,64,..., 232225 % 10", There is a logarithmic scale on the x and y-axes and the slope gives the
fractal dimension of the set .7 (N).

The set .7 (N ) consists of primes of two kinds organized in the clusters like structure.
The “cluster” starts at the prime p’ belonging to the pair of Twins or Cousin when
the equality 7o( p") = m4( p’) begins to hold. Next primes p not being Twins or Cousin
are met and the equality y(N)=0 is maintained: inside “clusters” of p, the values of
m2(N) and m4(N ) do not change their values and are equal to each other. When there
appears a prime belonging to the Twin or Cousin pair, then my(N') or m4(N) increases
by 1 and the equality »(N)=0 is lost. In other words, the first elements of these
clusters are characterized by the equation:

wWpH)=0nyp —&)#£0 (1)
and the ends of clusters satisfy
WP Y#OAyp —e)=0, (12)

where ¢>0. It turns out that the “clusters” (or “islands”) of such N that m2(N) = my(N)
are organized in a hierarchical, selfsimilar set.

To show it let us calculate the fractal dimension [8] of the set {p®}. We have
used the direct box-counting method. Namely, the whole interval (1,2*}) was covered
by consecutive intervals of length /=16 and the number M (/) of *boxes” containing
primes p“? was calculated. This procedure was successively repeated for lengths of
boxes two times larger, up to /=255 x 10'!". The obtained values of M(/) are
plotted in Fig. 6 in the double logarithmic axes. The large linear part in the middie
tells us that

M{)y~1"P", D, =~0509, (13)
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where Dy, is the fractal dimension of 7 (), see e.g. Ref. [8]. It is well known, see
Ref. [8] (p. 390) or Ref. [9], that the Haussdorf measure of the zeroset of the usual
Brownian motion is equal to %, so the above value Dy =0.509 of Eq. (13) is very
close to the strict, analytical prediction. There is a surplus of small boxes caused by
the cluster-like organization of the set 7 {N): short boxes grasp separate primes at
which y(NV) is not changing value (equal 0). In other words, there is a minimal length
(depending on N), below which 7 (N) is not a fractal: the small boxes intersect
with zeros of y(N) which are inside “clusters”. The fractal, selfsimilar hierarchy is
formed only by primes p*) marking the beginnings or ends of clusters and those
are distinguished by conditions (11) and (12), respectively. The size of the largest
cluster encountered duriag the computer search is not known, but the fact that boxes
with />1024 follow perfectly the power-like dependence (they contain clusters totally
inside) suggests that the length of clusters was smaller than 1000.

The fact, that usual characteristics of PRW are so close to the theoretical values
obtained after averaging over «a// realizations suggests that the difference between Twins
and Cousin can be used as a very fast random number generator of bits. For example,
our program using Eratosthenes sieve was able to search on the DEC Alpha 200 MHz
workstation for Twins and Cousins up to 2% ~4.3 x 10” in less than 9 min. During that
time random walk of over 25 millions uncorrelated steps are generated, see Table 1.
Random bits can be mapped into the byte representation of floating numbers and used
to generate usual RND numbers. Because at least 32 bits are needed to obtain one
floating number (in single precision), the speed of such RND generators is of interest.
However, it is known [7] that routines generating uncorrelated RND and simultaneously
possessing long periods are rather complicated and hence time consuming, see e.g.
RAN2 and RAN3 in Ref. [7], thus it is possible that RND based on PRW could be
competetive in this ressect. In addition, recently it was discovered that even RAN3
possesses some drawbacks [10,11]. Besides that, if there is an infinity of Twins and
Cousins, as every mathematician believes, a random number generator based on the
difference of Twins an¢ Cousins can have infinite period. To be more precise, infinite
period will emerge if there is no repeating pattern in the distribution of sequences
of consecutive Twins and Cousins — infinitude of Twins and Cousins alone is not
sufficient. But such a pariodicity in the distribution of Twins and Cousins seems to be
more curious than the absence of it. The possibility of using primes for generation of
RND 1s now under study.
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