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We study the multifractal properties of the set of growth probabilities {p;} for three-dimensional
(3D) off-lattice diffusion-limited aggregation (DLA) in two distinct ways: (i) from the histogram of
the p; and (ii) by Legendre transform of the moments of the distribution of p;. We calculate the {p;}
for 50 off-lattice clusters with cluster masses up to 15000. We discover that for 3D DLA, in contrast
to 2D DLA, there appears to be no phase transition in the multifractal spectrum. We interpret this
difference in terms of the topological differences between two and three dimensions.
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I. INTRODUCTION

The study of growth models has attracted considerable
attention recently. In particular, the diffusion-limited-
aggregation (DLA) model serves as a paradigm for a vast
range of observed growth phenomena, ranging from elec-
trodeposition and viscous fingering to neuron growth.
DLA, on the one hand, is appealingly simple to define
in terms of random walks sticking to the surface of the
growing aggregate but, on the other hand, displays in-
triguingly complex properties [1, 2].

A detailed description of the growth process in DLA is
given in terms of the set of growth probabilities {p;(M)},
where p;(M) is the probability that site i on the perime-
ter of an aggregate of mass M will be occupied in the
next growth step (M — M + 1). The set {p;(M)} dis-
plays a wealth of scaling properties that are conveniently
described in the framework of the multifractal or ther-
modynamic formalism.

The multifractal spectrum has been studied exten-
sively for two-dimensional (2D) DLA, both on-lattice
and off-lattice. The spectrum displays a systematic mass
dependence, corresponding to what is usually termed a
“phase transition” (see Sec. II) [3-5]. To our knowledge,
Ref. [6] is the only analysis of the {p;} of 3D DLA so
far. However, the authors treated on-lattice DLA and ob-
tained the p; using a Monte Carlo technique [7], a method
which cannot correctly give small values of p;.

In this work, we report a calculation and analysis of
the {p;} for 3D off-lattice DLA, using a numerical solu-
tion to the Laplace equation to determine the p;. We
calculate the multifractal spectrum, as well as specific
subsets of {p;}, such as the smallest and largest growth

46

probabilities, pmin [3, 4] and Pmax [8]. We carefully com-
pare the corresponding results for the 2D and 3D cases,
analyzed in the same fashion. We discover that for 3D
there appears to be no phase transition in the multi-
fractal spectrum, and interpret the difference in terms of
the topological differences between two and three dimen-
sions.

II. MULTIFRACTAL FORMALISM

We employ two distinct methods to calculate the mul-
tifractal spectrum from the set of growth probabilities

i+ [2].
{p(i)[ J]TIistogram method. We calculate the distribu-
tion N(a, M) of the quantities o; = —Inp;/InM; ie,
N(a, M)da is the number of growth sites in a cluster
of mass M with a values in the interval (o, o + da]
[9]. Specifically, we calculate the histogram (N(c, M)),
where the brackets () denote the average over an ensem-
ble of DLA clusters with mass M. We define

Fr(a, M) = In(N(a, M))/In M. (1)

Then the “histogram multifractal spectrum” fy(a) [9] is
the limit of fg(a, M) for M — o, i.e.,

fu(e) = Jim_fala M). @

(ii) Legendre transform method. First, we calculate
the “partition function” defined as the qth moment of
the distribution of p;

Z(g, M) = <Zp;’(M)>. (3)
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We define the effective scaling exponents 7(g, M) for fixed
g through the local slopes of a log-log plot of Z(q, M)
against M,

(¢, M) = —-8InZ(q,M)/0In M. (4)
The asymptotic behavior of these local slopes is given by

7(g) = lim 7(q, M). (5)

When the limit 7(q) exists, it characterizes the power-
law scaling of Z(q, M) as a function of M: Z(q, M) ~
M~7(@, In this case 7(q) corresponds to a free energy in
the “thermodynamic formalism.” If, in contrast, Z (g, M)
as a function of M scales faster than a power law for
g < q. so that 7(q, M) diverges, one speaks of a “phase
transition” at g, [3,4]. The multifractal spectrum fr(ar)
is obtained by Legendre-transformation of 7(q),

folen) = qar — 7(@), oz = DL, ©)

III. RESULTS

We constructed and analyzed 50 off-lattice clusters
with masses up to M = 15000, which we compare to
previous results in 2D from 90 clusters with M < 3000
and 19 clusters with masses up to M = 21000 [5]. We
calculate the p; by solving the Laplace equation under
DLA boundary conditions by discretizing the clusters on
a simple cubic lattice for 3D and a square lattice for 2D
(5].
(i) Histogram method. The histograms (N (o, M)) are
shown in Figs. 1(a) and 1(b) for 2D and 3D, respec-
tively. For 3D we found that for large M the distri-
bution seems to converge to a limiting fy(a). For 2D,
however, fi(a, M) clearly shows a mass dependence and
no tendency to converge for large M. The explicit mass
dependence in 2D can be seen directly by fitting the data
for o > ag to the form [5]

(N(a, M) ~ exp[-A(a” — o7)/(In M)°), ()

where v = 2.0 £ 0.3, § = 1.3 £ 0.3. Here ap = ap(M) lo-
cates the maximum of the distribution, while v and § are
exponents describing the asymptotic (large M and large
a) behavior. Note that v and é determine the scaling of

pnﬁny
In pmin (M) ~ (In M)Y, (8)

where y = (1 + v+ 6)/y =2.15 £ 0.22 [5].

(i) Legendre transform method. We study the parti-
tion function Z(q, M) for several M and g values. For 2D
[Fig. 2(a)], we observe a distinct upward curvature of the
negative moments, indicating that the small growth prob-
abilities vanish faster than a power of the cluster mass
M. Hence for 2D, 7(q, M)—the local slope—diverges as
a function of M for negative ¢ corresponding to a phase
transition at ¢ = ¢. = 0 in the multifractal spectrum.

In contrast, we find that for 3D an asymptotic power-
law relationship Z(q, M) ~ M~7(® holds for all mea-
sured values of g [Fig. 2(b)], indicating the absence of a

RAPID COMMUNICATIONS

R3017

phase transition for d = 3.

We obtain a sequence of estimates for 7(g) by linear
least-squares fits for large M, which allows us to calcu-
late fr.(ar) according to Eq. (6). For 2D we find that
the right hand part of fr(cr) has a tendency to move
to larger o, when 7(q) is determined from Z(g, M) for
larger masses. Such a behavior arises because the diver-
gence of 7(g, M) for negative ¢ also causes oy, to diverge.

For 3D, fr(ar) does not display a systematic mass
dependence, so we attribute the deviations between the
curves to statistical fluctuations. Moreover, the value of
L max from Fig. 2(b) is in agreement with the value of
Qimax obtained from the scaling of pmin (see below).

(%%) Pmin and Pmax. A further test of the possibility of
a phase transition can be obtained as follows. Suppose
there exist mass independent values of qin and amax s0
that fg(a) calculated from the histogram (N (e, M)) is
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FIG. 1. In(N(ea,M))/In(N,) for (a) 2D DLA. N, is the

number of growth sites with p; > 0 and is asymptotically
proportional to the cluster mass M, so that the plots reflect
also the scaling properties of fuz(c). The 2D data points
are obtained by averaging over ensembles of 90 clusters for
M = 247 (filled triangles), 505 (H),1030 (e),2100 (V), and
from ensembles with 19 clusters for M = 5250 (A), 10500
(0), 21000 (O). (b) The 3D data are obtained from a set of
50 off-lattice clusters with M = 165 (M), 435 (e), 1117 (V),
2892 (4A), 7502 (O), and 15015 (O).
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zero for a < amin and @ > @max. Then ppin ~ M~ %max,
Pmax ~ M ~%min and all other p; display power-law scal-
ing. Thus also the scaling behavior of Z(g, M) with M
must be of the power-law type and a phase transition due
to the divergence of 7(g) cannot occur. In contrast, it is
a sufficient condition for a phase transition if py,;, scales
faster than a power law with increasing M. Then, for
M — oo and ¢ < 0, pl, dominates Z(gq, M) [Eq. (3)]
and 7(q) [Eq. (4)] is divergent for ¢ < 0. Thus a phase
transition at ¢. = 0 occurs.

First we consider pmin for 2D and 3D DLA. In
Figs. 3(a) and 3(b) we show the mass dependence of
(Inpmin) for the 2D and 3D cases. From the log-log
plot for 3D, we find that power-law scaling holds, with
Qmax = 4.34+0.2. For 2D, we see deviations from straight
line behavior in a log-log plot, favoring faster than power-
law scaling. The inset of Fig. 3(a) shows (Inpmin) vs
(In M)%15 [see Eq. (8)], which is linear over more than
two decades of M (100 < M < 21 000). The 2D and 3D
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FIG. 2.  Plot of {in Z(g, M)) as a function of N, for (a)

2D DLA and (b) 3D DLA. Shown are ten moments ¢ = —4
(0),=3 (O), =2 (A), =1 (V), 0 (s), 1 (W), and 2 (filled
triangles) for a range of masses M up to 21000 (2D) and
15015 (3D). The number of clusters analyzed for each mass
is given in the caption to Fig. 1.
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results may be summarized by writing

o, — v Jy=215£022 for 2D,
In prmin A(ln M) ) {y =1, A= Qmax for 3D. (9)

Next we consider pmax [inset of Fig. 3(b)]. For 3D
DLA, we find ampmjn = 0.59 + 0.01. The exponent amiy, is
related to the fractal dimension d¢ by df = 1/(1 — Qmin)
[8]. From our value of amin we obtain df = 2.44 + 0.06,
which is slightly smaller than the value 2.52, which was
obtained from scaling of the radius of gyration of off-
lattice 3D DLA with cluster mass [2].

IV. DISCUSSION

The importance of the multifractal spectrum is based
on its connection to characteristic quantities describing
the growth process.

Specifically, the study of amax provides information
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FIG. 3.  Scaling of the minimum growth probability in

(a) 2D and (b) 3D. (Inpmin) is plotted as a function of the
cluster mass M. The inset of (a) shows the same quantity, but
plotted vs (In M)%*!. Inset of (b): log-log plot of (Pmax) as
a function of the cluster mass M, averaged over 50 off-lattice
3D clusters.
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about the internal structure of DLA [10-12]. A recent
picture for 2D DLA structure regards DLA as a succes-
sion of self-similar “voids,” separated by narrow “necks”
that scale slower than the linear size of the associated
“void” [4,13]. In both 2D and 3D, “necks” are created
by side branches in DLA that grow closer and closer until
their growth probabilities become so small that no fur-
ther narrowing occurs. This observed phenomenon can
perhaps be better understood if one notes that the {p;}
of a given DLA cluster are identical to normalized val-
ues of the electric field {E;} on the surface of a charged
conductor whose shape is identical to the given DLA clus-
ter. Thus as side branches of the DLA “conductor” grow
closer to each other, the electric field at their surface must
become smaller and smaller (since F; ox V¢;, where ¢ =
const on the surface of the conductor). Consequently
we observe a peculiar scaling behavior of the smallest
growth probability, which leads to the phenomenon of a
phase transition in 2D DLA.

In 3D, even if there are points where tips from differ-
ent branches of the aggregate come close or meet, there
is no significant screening of growth due to this config-
uration, because no volume is cut off from the exterior
and particles can enter the cluster from a direction per-
pendicular to the loop. Simply stated, one cannot cut
off a volume with branches in the same way that one can
cut off an area. Thus we interpret the apparent absence
of a phase transition for 3D as the effect of the topolog-
ical differences between two and three dimensions. We
further note that as d increases, dy becomes closer to
d — 1 [14]; the higher d is, the less dense the clusters are,
since p(R) ~ R%~<. Thus it is tempting to conjecture
that d = 2 is a “lower critical dimension” in the sense
that there is a phase transition for d = 2 but power-law
scaling for all d > 2.

Using the scaling properties of amax in 3D, we can
construct a qualitative picture for 3D DLA close to the
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wedge model [8, 11] for 2D DLA. Imagine one fits hollow
cones with opening angle v into the branched 3D DLA
structure (1 is taken to be the angle between the cone
axis and the walls). Using the electrostatic analogy, the
decay of the electric field and thus of the p; in the interior
of the cone as the tip is approached is a power law of
the depth [15]. Assuming that the depth of the cone
L and the mass of the surrounding DLA are related by
L ~ M'/4s | and equating powers of M, we find for small

¥

df0max = _% + g%é (10)
Our calculated value of max for the 3D case yields 9 ~
12°.

For comparison with geometrical studies of 3D DLA,
the angle 2y can be viewed as the upper limit to
the smallest angle characterizing the tendency of DLA
branches to diverge with increasing cluster radius R.

In summary, we have calculated the {p;} for 50 off-
lattice 3D DLA clusters, and compared our analysis to
the 2D case, which is believed to undergo a phase transi-
tion. We find that the 3D case is quite different. Specif-
ically, we find that (i) the local slopes 7(g, M) do not
diverge for ¢ < 0 (as they do in 2D), (ii) fr(a) has no
systematic mass dependence (as it has in 2D), and (iii)
Pmin has a power-law singularity in M (in the 2D case,
Pmin vanishes faster).
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