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The muitifractal formalism is applied to prime numbers. The spectrum of critical indices is 
found to be contained in the interval (ami., 1), where amin tends to 1 for increasing sets of 
numbers. Besides the scaling of moments with respect to the length of intervals the scaling 
with respect to the sizes of subsets of natural numbers is also considered. We have found the 
cusps in the plots of the functions f(o 0 and we claim that they are not caused by numerical 
roundings but they are a real effect. Besides the computer method, some analytical calcula- 
tions are presented. 

1. Introduction 

Recently there was a new method has been proposed for describing strange 
sets [1, 2], for review see ref. [3]. Since the pioneering paper [1] this method 
was applied to a variety of fractal phenomena, e.g. to diffusion limited 
aggregation (DLA) [4], the H6non attractor [5], the Feigenbaum attract.or [6] 
and Julia sets [7]; it was also applied to the Ryleigh-B6nard experiment at the 
onset of chaos [8]. 

The strange sets appearing in dynamical systems usually are not self-similar 
and due to this fact cannot be characerized by the fractai dimension alone. For 
a characterization of such sets Hentschel and Procaccia [9] introduced the 
family Dq of dimensions, where q is continuous The authors of ref. [1] 
generalized further the concepts of ref. [9] and defir~ed besides Dq the function 
f(a) allowing the recognition of the global universalities in dynamical systems. 
For example in ref. [8] it was shown that the experimentally observed orbit in a 
forced Ryleigh-B6nard experiment is in the same universality class as the orbit 
of the circle map. 

The formalism developed in ref. [1] can be summarized for our purposes as 
follows: Let S be a set embedded in d-dimensional Euclidean space R d, where 
d is the smallest dimension which is sufficient for embodying S. Let S~, 
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$ 2 , . . . ,  SMO ) denote the partitioning of S into M(1) disjoint subsets such that 
each piece S i lies within a sphere of radius 1. Usually with the strange set there 
is associated some natural measure; let p be such a measure. Let us assume 
that the measure p is probablistic, i.e. p(S)= 1. Now we can define for a 
particular covering {Si} a partition function 

M(I) 

Xq(1)= ~ pq(S,) ,  (1) 
i = 1  

where q is a real number  and p(Sj) is a measure of the set S r In examples 
studied so far it was found that the m o m e n t s  j(q(l) behave like a power of 
length 1, 

Xq(1)--F tq~ , (2) 

where the function , ' (q) does not depend on I and characterizes the set S. For a 
given case relation (2) holds in the appropriate regime of l: for some sets it 
holds for l,~ 1 and for other,  like e.g. for DLA,  it holds for 1-> 1. The 
importance of the powerlike behaviour (2) was recognized earlier by P. 
Grassberger and I. Procaccia [10] for the particular value q = 2, i.e. for the 
so-called correlation function. If the set S is homogeneous (self-similar) and the 
measure p is proportional to the volume ("capacity") it can be easily shown 
that r ( q )  = (q  - 1)D 0, where  D o is the usual fractal dimension. Owing to this 
fact it is natural to introduce the following generalized fractal dimensions: 

Dq = r ( q ) l ( q -  1). (3) 

It can be proved that Dq is a decreasing function, 

Dq, <~ Dq for q '  > q .  

If Dq is not  constant the amount  of difference Dq - D o gives a rough measure 
of the inhomogeneity of S. Further information on the structure of the supports 
of the measure p is supplied by means of the following change of variables. Let 
us introduce the function o~(q) measuring the slope of r (q) :  

d r (q )  (4) 
or(q) = dq 

It can be shown that ~-(q) is concave and because of this fact the above relation 
can be i n v e r t e d -  so instead of q the independent  variable is now a. Next 
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instead of ~-(q) the  following function is introduced: 

f ( a )  = a q ( a )  - q ( a ) )  , (5) 

where q is expressed by a via relation (4). Roughly speaking the variable a 
tells how the measure of the subset S~ depends on the  length l, 

p, - p ( S , )  = l ~' , (6) 

where the "critical" exponent ot~ takes values between ¢ltmi n and area x. It follows 
from (3) - (5)  that  

ami n = D= , Otma x = D_= . (7) 

The function f ( a )  tells us what is the measure of the subset of S where  the 
measure scales with exponent a. For  self-similar fractal sets the spectrum of 
exponents consists of one point t~ = D O and the corresponding value of function 
f is 3~[~) = D o. Sets possessing a nontrivial spectrum of a ' s  (which corresponds 
to nonconstant Dq) are called multifractal sets. Let  us stress that the f - a  

formalism is in fact connected with the supports  of the measure p and not  with 
the set S; sometimes the terms: multifractal sets and multifractal measures,  are 
used synonymously. 

Above we have considered one particular covering {Si} of S and others 
coverings will in general lead to different f (a ) .  To avoid the dependence on the 
covers the infimum of the partition function over all coverings is taken [1, 18]. 
In following sections we will assume that there is no significant dependence  on 
the coverings chosen and we will use the simplified version of the formalism 
with one particular partition. 

Originally the above method was invented for dynamical systems, but it can 
be applied to any set. In this paper  we are going to look for the multifractal 
properties of the set of prime numbers.  In contrast to the most cases studied so 
far by the multifractal formalism, the set of prime numbers allows some 
analytical estimates of the moments  Xv and the information about the scaling 

• '-~ computer.  Also the form of the regimes can be obtained without use of u,~ 
deviation from the powerlike behaviour (2) can be obtained analytically. We 
think that although the prime numbers are unphysical it is reasonable to test 
the multifractal formalism on a set less trivial than e.g. the Cantor sets, which 
allows strict evaluation of the moments  Xq. In the next section we will present 
the results of camputer  calculations for some finite subsets of natural numbers.  
In section 3 some analytical estimation are presented. Finally section 4 contains 
concluding remarks and conjectures. 
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2.  C o m p u t e r  ca l cu la t i o n s  

For the purpose of simplifying the programs we were considering subsets of 
the natural numbers of the form S(v)= {1, 2 , . . . ,  N =  2~}. The customary 
notation for a function giving the number of prime numbers smaller or equal to 
x is ~'(x). Next we define the measure of  the subset S(n) = {i l, i 2 , . . . ,  i,} 
S(v) as the number of pr ime numbers contained in it divided by ~r(2~). Let us 
split the set S into the intervals l,(k) of length 1 = 2 k of the form 

In(k ) = { ( n - I ) 2  k + l ,  ( n - 1 ) 2  k + 2 ,  . . . ,  ( n - 1 ) 2  k + 2  k} 

= { ( n -  1)1+ 1 ,  ( n -  1 ) 1 + 2 ,  . . . . .  nl}, 

where n = 1, 2, 3 . . . .  , M(I) = 2 ~-k, kmi n ~< k -<- kmax and this range depends on 
the value of v. Now we can write 

S = l~(k) U l(k)2 U .... U G ( o ( k ) .  

The measure of the interval In(k ) is given by 

zr(n2 k ) - zr((n - 1)2  k ) 
p(l,,(k)) = zr(2 ~) (8) 

and moments  of this measure are given by 

Ni l  

xNq(I)= ~ pq(li(k)). (9) 
i= l  

From this definition it follows that X I ( I )  = 1. The sets I, are ordinary intervals 
and of course are not interesting in itself but the measure defined on them by 
(8) possess, as we will see further, quite nontrivial properites. 

We have performed computer  calculations of the above quantities p(l,) for 
values of v = 18, 19, 20, 21, 22, and 23, which corresponds to the range of 
natural numbers searched from N = 262 144 to N = 8 388 608. Each time the 
values of k were chosen between the values kmi . = v - 12 and kma x = P - 3 ;  it 
means that the number  of  intervals needed to cover S was 4096 for the most 
subtle refinement and was 8 in the case of the largest intervals. The computer 
calculated the quantities p(l,,) given by (8) exactly and next the moments  gq(l) 
were calculated. The parameter  q was changed in the interval - 2 0 . . .  100 with 
step 0.25. Figs. 1 and 2 shows the plot of In xq(l) vs In I for a few values of q 
and for v = 18 and v = 23 respectively. The functions ~'(q) were calculated by 
means of the least squares method. In the worst cases the standard deviation 
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Fig. 1 (cont.). 

from the powerlike dependence  was about 1-2 percent, so we conclude that in 
the investigated regimes of l and q the scaling law (2) for prime numbers is 
fulfilled with high accuracy. Finally we have calculated numerically the func- 
tions ~ ( q )  and f(t~). The resulting functions f(t~) are shown in fig. 3. For each 
u the maximal value of t~ (=D_~)  and the minimal value of a (=D~)  shifts 
towards a = 1; we will discuss this phenomenon  in the next section, were we 
will show analytically that a ( - ~ ) =  1 and f ( a ( - ~ ) ) =  1. We have found the 
same changes of D~u 0 with the variation of u; see the plot of Dq v s  q shown in 
fig. 4. We see from these figures that Oq a r e  very close to D_~ for q just below 
zero, but Dq are far from D~ even for q = 50. 

From fig. 3 it is seen that the functions f ( a )  have the cusps near the value of 
Otmin; the multivaluedness of the function f ( a )  is caused by the fact that the 
computer  has plotted in fact the pairs {t~(q), f (q)}  and not the function f ( a )  
alone. The possible reasons of the origin of such a cusp will be discussed later 
on in this section. The values of f for a near Ogmi n are negative and remain such 
in the neighbourhood of zero, but the values of f(amax) shift tO 1 with 
increasing v. The sets with negative fractal dimension are called "volatile" [11]. 

As remarked by Coniglio [12] the sets which are in principle unbounded can 
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Fig. 3. The plots of  f(a) for u = 18 to 23 from left to right respectively. 
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display a scaling of the moments with respect to the linear sizes of the 
system- for example aggregates can grow up to arbitrary diameter L. In our 
ease the moments a'q provide an example of the scaling with sizes N of the 
intervals { 1 , . . . ,  N}. Namely we can cover different subsets of the natural 
numbers by intervals of the same length I and look for a dependence on N of 
the appropriate moments. In other words we keep I fixed in the definition (9) 
and obtain XIq(N) which corresponds to the definition of the fractal dimension 
via the relation between the linear size and the "mass" of the fractal. 

The common values of I for different N's were in the range 1 1 . . .  15 and we 
obtained five families of moments Xtq(N) and five functions f(a). The plot of 
In ,,,(tq(N) vs In N for few values of q is shown in fig. 5 for 1 = 11 and l = 15. 
Also for other I we have found the powerlike dependence: 

Xlq(N)- N- ' (q) .  

The functions ~-(q) again were determined by the least squares method now 
from six points corresponding to N = 1 8 . . .  23 (although only two points are 
sufficient to determine the straight line). The resulting functions f(a) are shown 
in fig. 6a. As we see now the functions f(a) have a cusps in the neighbourhood 
of area x. The magnification of this region is shown in fig. 6b. Initially we 
suspected that it was a computer artefact. We tried to use the step for the 
numerical differential of ~-(q) in the range 0 .025 . . .  1.0; we have also changed 
other parts of the programs- the  structure was absolutely persistent to any 
such modifications. The only explanation of the turnbacks of f (a )  in figs. 3 and 
6 are the oscillations in the slopes of log-log plots of the moments. Such 
oscillations were previously reported in the literature [13, 14, 5] and they are 
inherent to the lacunar fractal sets [11]. These oscillations manifest at larger 
order moments - for q's in the intermediate region the overall changes in a (q )  
(or equivalently Dq) are dominant or the deviations from the powerlike 
behaviour are absent for such q's. The deviations from the straight lines in figs. 
1, 2 and 5 are practically invisible; see however the slight oscillations around a 
straight line for q = 95. We have plotted a(q)  for the case of scaling with N in 
fig. 7 and contrary to the general prediction they are not monotonic. The 
curves for l = 13, 14 and 15 have an extremum in one point and a(q) for i = i i  
and 12 has extrema in two points corresponding to two cusps in fig. 5b. We 
have checked that up to q = - 1 0 0  there is no further oscillation and a(q) 
reaches a plateau. A further justification for such an explanation is given in fig. 
8 were the difference in the shape of function f(ot) caused by the different 
number of points taken for the least squares method are shown. In fig. 8 the 
functions f are plotted for a case of scaling with respect to 1 for N = 18; for 
other N or f ' s  for a scaling with respect to l we have not observed such 
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significant differences. To determine all curves in fig. 3 we used 9 values of l; 
we skip the smallest I because as we see, from fig. lb,  In X deviates the most 
from the straight lines just for the shortest interval. A similar effect was 
observed by Arneado et al. [5] for the H~non attractor. 

L.A. Smith et al. [14] linked oscillations to the logarithmic corrections to the 
powerlike dependence of moments: 

in X q = r (q)  l n l +  0 ( ln l )  + . . . ,  

where @ is a periodic function. We think that the oscillating character of 
deviations from the straight lines as well as the periodicity of 0 are the property 
of "true" fractal sets and it is not a case for prime numbers: we will show in the 
next section for large I q{ the existence of terms of the form la in I and In In N 
which are not periodic. 

As can be remarked from fig. 5 the reflection of curves in the line 
a = a * ,  a *  is the turning-point, and next in the line f=f*, here f* =f(a*), 
changes the functions f(a) into smooth curves - the result of these operations is 
shown in fig. 9. At  first sight it looks like a mystery but this kind of symmetry 
with respect to the reflection is caused by the fact that a (q )  changes continu- 
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ously at the points a*. Also Legendre transformations applied "by force" to 
other functions which are not convex or concave (like e.g. cos x for x ~ (0, 7)) 
will possess this property of "rectification". But a kind of mystery is the 
meeting of funtions f ( a )  for all r s  in or.e point: at t~ = 0 .9233 . . .  all f ' s  are 
equal to zero. We have no explanation of this curious fact. 

In the next section we will present the analytical calculations of moments 
Xq(l) and the spectrum of a.  

3. Analytical calculations 

Motto: Truth is too complicated to allow anything but approximations 

John yon Neumann 

In this section we are going to understand the results presented above and 
obtained with the help of the computer. The idea is to estimate the measure 
p(l,,(l)) given by (8). In this section we will consider a subset {1, 2 , . . . ,  N} of 
I%1 which we will cover by disjoint intervals of length l, where Nil ~ ~; the 
particular choice of N and ! in the previous section in the form of the powers of 
two was made for the sake of convenience. 

Let us recall that there exists a lot of formulas expressing the function ~'(x) 
in terms of other funtions. The best estimation, valid under the assumption of 
the Riemann hypothesis on zeros of the zeta function ~(s), is the following one 
(see e.g. ref [151, formulas (5.1.50)): 

~'(x) = ii(x) + 6(V'2 In(x)), (lO) 

where the logarithmic integral is given by 

x f l  
U(x) = op 

0 

d u .  (11) 

The logarithmic integral has the following asymptotic expansion: 

(?+x, li(x) = x + 
2! r! ) 

(ln(x))2 + . . .  + (ln(x))--------~ + . . . .  (12) 

Keeping the first term only we obtain for x >> 1 the following approximation: 

x (13) 
,n'(x) = In(x) " 
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The above formula was guessed by sixteen-year-old Gauss in 1793, see ref. 
[16]. 

From (13) it follows that prime numbers do not form the self-similar set as 
the "mass" of the interval of length L is given by L / l n  L and this quantity does 
not display the rescaling "covariance". 

Substituting (13) into the definition of the measure p(l i ( l ))  we obtain 

[ (i + 1)1 
p(li(l)) = k in ( ( /+  1)/) 

il 
In(i/) ) N / I n ( N ) .  

For large I we have 

ln((i  + 1) l )  ~ In(//) (14) 

and the above formula can be written as 

1 l 
P(l i ( l ) )= ~ ( N )  In(i/)" (15) 

Putting the above expression into (1) we obtain (now M ( I ) =  N/1) 

N I l  lq 

Xq(l) : ~ ( N ) - q  ,=1 ~ (In(it)) q " (16) 

Because In x changes slowly for large x we can approximate the sum by an 
integral: 

xq(0 =  (N)-qt q-' f 
du 

(ln(u))q - 
(17) 

As the verification of our approximations let us look for the partition function 
for q = 1; it should be equal to one. For q = 1 we obtain from (17) in view of 
(10) and (11) 

x,( l )  = r r ( N ) - ' ( r r ( N ) -  rr(l)) 

and for N>>I we have x l ( l )=  1. 
Let us change the variables in the integral appearing in (17) and let us 

denote the resulting integral by l (q):  

Xq = r t ( N ) - q l q - ' ( - 1 ) q - ' l (  q) , (18) 
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where 

- I n  N 

l (  q ) =  f t -q e -t  d t .  
- I n  ! 

(19) 

For q < 1 this integral can be expressed by the incomplete gamma ~unction 
y(a,  x) ([15], formula 6.5.2): 

1 

7(a, x) = f e-' t °- 
0 

1 dt, a > 0 .  

We obtain 

l ( q )  = V(1 - q, - I n  N)  - 31(1 - q, - I n  l ) .  

Using the asymptotic expansion of 7(a, x) we obtain for In N >> In l >> 1 and 
fixed q satisfying - q  <~ In I (remember that q < 1l) the estimation 

( / ) q - 1  (20) 
gq = . N /  " 

From the above it follows that (in the appropriate regime of l 's  and q's) we 
have a scaling with ~'(q) = q - 1 and Dq = 1 for q just below 1; this last result is 
confirmed by the plot of Dq in fig. 4. The next check of the formula (20) is 
given in the table I; it shows a sample of values of Xq(l) calculated exactly by 
means of the brute force method described in the previous section and via (20). 

For q > 1 the integral (19) cannot be evaluated explicitly. For  q = n, n 
integer, after n integrations by part we obtain for the integral in (17) 

du ( 1! 1 ) +  1 li(u) 
( l n u )  n = - u  ( n - D 0 n u )  n-I + . . . .  + ( n - 1 ) ! l n u  ( n - l ) !  ' 

so we end up with the logarithmic integral. Making use of the asymptotic 
expansion (12) leads to the exact cancelation of n terms from series r '  "x ~l,~j with 
terms integrated out by parts and we obtain the estimation (20). As is seen 
from the table I the estimation (20) is wrong for large q. The reason for it is 
that after the cancelation of n terms of the series expansion (12) with the terms 
integrated out by parts we are left with the nth term of series (12). But starting 
with the nth term, where n ~ In x, the terms of asymptotic expansion (12) are 
divergent. For l = 16 384 the optimal number  of terms in expansion (12) is 9, 
and for q >~ 10 the formula (20) is not v a l i d -  it agrees with table I. Let us 
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Table  I 
N = 2 097 152,1 = 16 384. 

- 4 0 . 0  2.48662E + 0086 1.71672E + 0087 

- 3 5 . 0  7.23701E + 0075 3.58277E + 0076 

- 3 0 . 0  2.10625E + 0065 7.59661E + 0065 
- 2 5 . 0  6.12998E + 0054 1.64058E + 0055 

- 2 0 . 0  1.78406E + 0044 3.62141E + 0044 

- 15.0 5.19230E + 0033 8.21334E + 0033 

- 1 0 . 0  1.51116E + 0023 1.92988E + 0023 
- 5 . 0  4.39805E + 0012 4.76835E + 0012 

0.0 1.28000E + 0022 1.28000E + 0002 
5.0 3.72529E - 0009 4.12082E - 0009 

10.0 1.08420E - 0019 2.18450E - 0019 

15.0 3.15544E - 0030 2.73789E - 0029 

20.0 9.18355E - 0041 5.93800E - 0039 

25.0 2.67276E - 0051 1.51644E - 0048 
30.0 7.77877E - 0062 4.03799E - 0058 

35.0 2.26392E - 0072 1.08850E - 0067 

40.0 6.58887E - 0083 2.94638E - 0077 

mention that in deriving the formula (20) we used only the first term of the 
asymptotic expansion for the incomplete gamma function. 

Now we estimate the integral (19) for large Iq[. Let us rewrite it in the form 

In N 

t(q)=(-1y-' f 
In I 

et-q in (t) dt .  

For sufficiently large q we can write 

t - q l n ( t ) - ~ - q l n ( t ) .  

The above approximation is justified for [q] >> In N. Then we obtain 

l ( q )  = 
( -1)q -i 

1 - q  
((In N )  -q+ ' - (In l ) - q +  ' ) . 

For q negative the contribution from the upper limit of integration is relevant 
and we obtain 

Xq( l )  = 1 -  q - -  (21) 
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On the other hand for q positive the contribution from the lower limit of 
integration is relevant and we have 

Xq(l) = q---1 kin l /  " 

From (21) it follows that the scaling law (2) with respect to I is fulfilled with 
~r(q) = q -  1 for -q-~, 1, and from that it follows that D_® = O~ma x -----1 and 
consequently f(0tm~x)= 1. This conclusion agrees perfectly with the results 
obtained from explicit computer calculations. The falling down of function f(a) 
comes from a(q) for q larger than in I and smaller than In N. From (21) we see 
that for negative q the simple scaling of moments with respect to N in the form 
of powers of N is violated and the logarithmic corrections are present. Because 
of that the function ~'(q) is no longer concave, but this is insufficient as an 
explanation of cusps of the functions f(a) near Otma x because the turnbacks in 
fig. 6 were detected already for q = - 2 0  what is outside the range of ap- 

plicability of (21). 
We see from (22) that for q ~ In N the powerlike behaviour (2) of the 

moments with respect to l and N is violated and the value of a(~) is not 

determined. 

4. Conclusions 

We have shown for subsets { 1 , . . . ,  N} E N, where largest N was equal to 
8 388 608, that the moments gN(l) and Xtq(N) have the powerlike dependence 
(2) which holds with very high accuracy for appropriate regimes of the orders 
q. For a scaling with respect to l and N the functions f(a) do not obey the 
equality f(amin) = f(amax). The generalized dimensions Dq take values from the 
interval (ami n, 1) and we conjecture that the value D~ = t~i  n converges to one 
for N--~oo for the case of scaling with respect to I. The example of prime 
numbers shows explicitly that for sufficiently large q's there can be departures 
from the powerlike dependence. In connection with that let us remark that to 
our knowledge the multifractality for DLA was investigated for moments of 
order q = - 4 . . .  8 and it is possible that for larger q the situation can change. 
It is possible that reported recently [17] deviations from scaling for extremely 
large aggregates are caused by such a mechanism. 

We have found explicitly the logarithmic corrections to the simple hypothesis 
(2). We suggest that for such a case it can be reasonable to change the usual 
f - a  formalism by introducing the second besides ~'(q) function tr(q) by means 
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of the definition 

X q ( 1 ) - . F ( q ) ( l n l )  ¢(q) . 

Of course for such a case the functions ~" and cr need not be longer concave and 
because of that it will not be possible to perform the Legendre transformation 
and obtain the function f(a). It seems to suggest that families of critical 
exponents ¢(q) are more fundamental objects than f (a ) .  
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