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The Physical Interpretatron of the Quantum Dynamics.

By P. A. M. Dirac, St. John’s College, Cambridge ; Institute for Theoretical
Physics, Copenhagen.

(Communicated by R, H. Fowler, F.R.S.—Received December 2, 1926.)

§ 1. Introduction and Summary.

The new quantum mechanics consists of a scheme of equations which are
very closely analogous to the equations of classical mechanics, with the funda-
mental difference that the dynamical variables do not obey the commutative
law of multiplication, but satisfy instead the well-known quantum conditions.
It follows that one cannot suppose the dynamical variables to be ordinary
numbers (c-numbers), but may call them numbers of a special type (q-numbers).
The theory shows that these g-numbers can in general be represented by matrices
whose elements are c-numbers (functions of a time parameter).

‘When one has performed the calculations with the g-numbers and obtained
all the matrices one wants, the question arises how one is to get physical results
from the theory, ¢.c., how can one obtain c-numbers from the theory that one
can compare with experimental values ¢ Hitherto this has been done with
the help of a number of special assumptions. In Heisenberg’s original matrix
mechanics it was assumed that the elements of the diagonal matrix that repre-
sents the energy are the endrgy levels of the system, and the elements of the
matrix that represents the total polarisation, which are periodic functions of
the time, determine the frequencies and intensities of the spectral lines in
analogy to the classical theory. Schridinger’s wave representation of the
quantum mechanics has provided new ways of obtaining physical results from
the theory, based on the assumption that the square of the amplitude of the
wave function can in certain cases be interpreted as a probability. From this
assumption one can, for instance, work out the probability of a transition being
produced in a system (or the number of transitions produced in an assembly
of like systems) by an arbitrary external perturbing force,* and can thus, by
supposing the perturbation to consist of incident radiation, obtain directly
Einstein’s B coefficients. Again in Born’s treatment of collision problemst
it is assumed that the square of the amplitude of the wave function scattered

* Bee Bohrodinger, ¢ Ann. d. Phys.,” vol. 81, p. 112 (1626) ; also § 5 of the author’s paper

* Roy. Soc. Proc.,” A, vol. 112, p. 681 (1926).
T Born, ‘ Z. f. Physik,” vol. 37, p. 863 ; vol. 38, p. 803 (1926).
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in any direction determines the probability of the colliding electron (or other
body) being scattered in that direction.

Recently Heisenberg has obtained another point of contact between the
theory and experiment, of a somewhat different nature.* If one considers
the problem of two atomic systems in resonance, ¢.c., with energy pulsating
from one to the other, one can find the time mean of the energy of one of them,
by assuming this time mean to be given by a diagonal element of the matrix
that represents the energy of that system. Similarly one can find the time
mean of the square of its energy, and of the cube of its energy, and so on.
Heisenberg has shown that these calculated time means are just what one would
expect from the assumption that the energy changes discontinuously from one
quantised value to another. The theory can thus be considered to show that
the energy actually does change discontinuously from one quantised value to
another, and it enables one to calculate the fraction of the total time during
which the energy has any particular value, but it can give no information
about the times of the transitions.

This result is capable of wide extensions. It can be applied to any dynamical
system, not necessarily one composed of two parts in resonance with one another,
and to any dynamical variable, not necessarily one that can take only quantised
values. Ome can (disregarding difficulties introduced by degeneration) calculate
the time mean of any dynamical variable, ¢ say, for each stationary state of
the system, and similarly the time mean of g2, and of ¢3, etc. The information
thus obtained about g regarded as a function of the time can be summed up
by one stating the fraction of the total time during which g lies between any
two specified numerical values, ¢" and ¢’ say. One can say nothing about the
intervals of time during which this condition is satisfied except the fraction
they form of the whole time.

It thus appears that certain questions that one can ask about the system on
the classical theory (e.g., the question : For what fraction of the total time does
g lie between two specified values ?) can be given definite unambiguous answers
on the quantum theory as well as on the classical theory. In the present paper
a general theory of such questions and the way the answers are to be obtained
will be worked out. This will show all the physical information that one
can hope to get from the quantum dynamics, and will provide a general method
for obtaining it, which can replace all the special assumptions previously used.
and perhaps go further. The questions considered above concerning the
fraction of the total time during which specified conditions hold do not form a

* T am indebted to Dr. Heisenberg for informing me of his results before publication.
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suitable starting point for this investigation, because they can be given definite
answers only for non-degenerate systems, and a system is always degenerate
when two or more of its first integrals can take continuous ranges of values.
We shall therefore approach the subject from a more general point of view.

The general question of classical mechanics can be formulated as follows :
What is the value of any constant of integration* g of a given dynamical system
for any given initial conditions, specified by numerical values g,,", p,’, say,
for the initial co-ordinates and momenta ¢, p,,? The dynamical theory
enables one to express ¢ as a function of the ¢,,, p,,, and one has then only to
substitute for the g,, p,, the numerical values ¢,’, p, to obtain the answer
to the question. On the quantum theory one can also obtain an expression
for g as a function of the ¢,q, Py, but the ¢,y and p,, do not now satisfy the
commutative law of multiplication, so that if one substituted numerical values
for them the result would in general depend on the order in which they were
previously arranged. One can thus give no unambiguous answer to the question
on the quantum theory.

One cannot answer any question on the quantum theory which refers to
numerical values for both the ¢,, and the p,,. One would expect, however,
to be able to answer questions in which only the g¢,, or only the p,, are given
numerical values, or, more generally, when any set of constants of integration
g, that commute with one another are given numerical values. If %, are the
variables canonically conjugate to the &,, one would now want to know what
one can find out about ¢, considered as a function of the ,, with these numerical
values for the &, It will be shown that one can determine without ambiguity
the fraction of the whole of n-space for which ¢ lies between any two specified
numerical values. More generally, if ¢,, g, . . . are a set of constants of
integration that commute with one another, one can determine the fraction
of the whole of n-space for which each g, lies between specified numerical values.
Hence if one is given an assembly of like systems all having the same numerical
values for the £,, and one assumes that they are distributed uniformly over the
7-space, one can determine the number of systems having each of their g,’s
lying between. specified numerical values. Questions of this type appear to
be the only ones to which the quantum theory can give a definite answer,
and they are probably the only ones to which the physicist requires an answer.

To answer questions in which the &, are given numerical values, we require

* The words congtant of integration include such quantities as the value of a varying
co-ordinate or momentum at a specified time ¢ =f,. On the quantum theory such a
“value ”” would be a g-number, ¢, being, of course, a ¢c-number.
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a scheme of matrices to represent the dynamical variables, whose rows and
columns refer toc numerical values for the &, In most atomic problems the
electrons are given to be initially in definite orbits. For such problems one
would take the &, to be the initial values of the action variables J, (or other
first integrals that define the orbits), and could then, with the help of the ordinary
matrix representation, work out the fraction of the w-space for which certain
specified conditions hold. There are certain problems, however, for which
the electrons are not initially in definite orbits (e.g., the problem of the inter-
action of a B-particle emitted by a radio-active atom with the orbital electrons
of the atom, for which the (B-particle is initially in the nucleus). To treat
such problems we should require a matrix representation of the dynamical
variables whose rows and columns refer to other constants of integration of the
system than the action variables, such that the initial conditions can be stated
by specifying numerical values for these constants of integration. (In the
example of the B-particle it would probably be convenient to have the matrix
rows and columns referring to the co-ordinates of the B-particle at the time of
emission, ¢ = f, say. We should then be interested only in those rows and
columns of the matrices that refer to the [B-particle being in the nucleus at
the time ¢ = f,, and could calculate the range in which its initial momentum
must lie in order that any special kind of interaction, specified by numerical
values for certain constants of integration, may take place. We should thus
obtain the probability of that kind of interaction, on the assumption that all
directions of emission are equally probable.)

We therelore require a theory of the more general schemes of matrix repre-
sentation, in which the rows and columuns refer to any set of constants of integra-
tion that commute, and of the laws of transformation from one such scheme to
another. This is worked out in §§ 3-5. This theory may be regarded as a
development of Lanczos’s field theory,® the field representation in Lanzcos’s
theory being really the same as a matrix representation with matrices that have
continuous ranges of rows and columng instead of the usual discrete sets.

In § 6 the transiormation theory is used in the investigabion of the general
method of obtaining physical results from the matrix mechanics, and in §7
it is shown that this general method is in agreement with the special assumptions
previcusly used.

§ 2. Wotation.

I the ordinary matrix mechanics one obtains matrices to represent the

ol variables whose rows and columns refer to stabionary states of the

# Tancwos, ¢ Zeite, {, Phys.,” vol. 35, n. 812 (1528).
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system. Thus if «;, «, ... «, are the first integrals of the equations of motion
(action variables or otherwise) u being the number of degrees of freedom,
each row or column can be labelled by specified values for oy, oy ... a,, say
ay, o ... o, and we may write the elements of the matrix representing any
dynamical variable ¢ by ¢ (o, &t ... ot oy, a0y’ ... &”’) or by ¢ (¢’ &) for
brevity. These matrix elements are functions of the time only. In the present
paper we shall not take relativity mechanics into account, and shall count the
time variable wherever it occurs as merely a parameter (a c-number).

The parameters that label the rows and ¢olumns of the matrices may take
either discrete sets of values or all values in certain continuous ranges, or perhaps
both. It would complicate the formula unnecessarily if we were to write them
so as to take both possibilities into account. The case with the continuous
ranges of values is the more general and typical one. We shall therefore write
all our formule as though these parameters can take only continuous ranges of
values, it being understood that the necessary changes have to be made when
the discrete sets occur. The matrix law of multiplication will now read

~

ab (ml O{,’/) — o (m/ m/li) d (X,I,' . b (alll ali)’

nr

where do
all the values of the o

means do,""’ . day””’ ... do,””’, and the range of integration is over
"""s that label rows and columns of the matrices.*

One cannot go far in the development of the theory of matrices with con-
tinuous ranges of rows and columns without needing a notation for that function
of a c-number & that is equal to zero except when # is very small, and whose
integral through a range that contains the point « = 0 is equal to unity. We
shall use the symbol § (z) to denote this function, 7.e., (%) is defined by

3(x) =0 when w30,
and

A0

J_ z 8 (@) = 1.

Strictly, of course, § (x) is not a proper function of «, but can be regarded only
as a limit of a certain sequence of functions. All the same one can use 3 ()
as though it were a proper function for practically all the purposes of quantum
mechanics without getting incorrect results. One can also use the differential
coefficients of 3(x), namely &' (z), 3" (®)..., which are even more discon-
tinuous and less ““ proper ”’ than J (x) itself.

* Whenever the limits of integration of an integral are not specified, the whole range of
the parameter that is used for labelling matrix rows and columns is to be understood.

VOL. OXIIT.—A. 2U


http://rspa.royalsocietypublishing.org/

Downloaded from http://rspa.royalsocietypublishing.org/ on February 24, 2017

626 P. A. M. Dirac.

A few elementary properties of these functions will now be given so as not
to interrupt the argument later. We can obviously take 8(— &) = & (%),
¥ (—») = — & (#), ete. The condition 3 (x) = 0 except when x = 0 may be
expressed by the algebraic equation # 3 (z) = 0. [This equation, together with
the equation 3 (%).% = 0, can be used in the definition of §(z) when » is a
g-number or matrix.] If f(x) is any regular function of  and @ is any c-number,
we have

J_ f@) 8@ —2)do = f(a), (1)

so that the operation of multiplying by d(e — @) and integrating with respect
to @ is equivalent to the operation of substituting @ for #. Again we have, by
integration by parts

a

[ r@ve—aw=| —r@se-n] +[ roreas=re
‘ 1)

=]

since the integrated term vanishes at both limits, and in general

el

j f(@) 8 (@ — ) dov = £ (a), (1)

so that the operation of multiplying by 3" (¢ —z) and integrating with respect
to % is equivalent to the operation of differentiating n times with respect to x
and susbtituing ¢ for .

We shall now show that, if & is another c-number,

r S(a— o) 8 (5 —b)do — 5 (a — b). @)

If we regard the left-hand side as a function of b and put it equal to ¢ (), then
we shall have that ¢ (b) is equal to zero when b differs appreciably from ¢, and
also

j s b= { da—nd| d@—bd=1

Vo )

Hence ¢ (b) has all the properties of 3 (¢-—b) and may be put equal to 3 (@ —b).
We should have obtained equation (2)if we had put f () equal to § (z—»5)in (1).
This is thus a case in which one can use § (x—b) as though it were a regular
function of & without getting a wrong result. Another such case is the putting
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of f(z) equal to §(z — b), or, more generally, 3™ (z — b),in (1'), leading to the
equations

.20

j (@ — ) (@ — bydu — 5 (@ — b), @)
and -
j 5 (@ — @) 3@ — b) dw — 3™V (4 — b). (2)

Equation (2') can be verified independently by the partial differentiation of (2)
with respect to @, and then (2”) can be verified by the partial differentiation
of (2') n times with respect to b.

From (1) if we take f (x) = « and @ = 0, we get

0

J_m—xB'(w)dle.

But —# 8’ (2), considered as a function of z, vanishes except when |z| is very
small. Hence —x 3’ () has all the properties of § (x), and we can write

— x ¥ (x) = 3 (). (3)

When using matrices with continuous ranges of rows and columns, we need
the function 3(x) to express the elements of the unit matrix. The unit matrix
must by definition be such that when multiplied by any matrix y the product
is equal to that matrix, 7.e., we must have

J’l (ala/l/) dall/ . y(a’l/lal/) — ?/(alall)'
We therefore see that
1 (U.,OC“/) — 8(0(1/ . o(‘l///) . 8 (OCZI . (len) . S(O(u/ . O’_u”') = (('/.I o Of.,”),

say, for brevity. The general diagonal matrix f () has elements f (o) . § (o' —a”).
We shall call the quantities f(«’) the diagonal elements of this matrix.

§ 3. The Transformation Equations.

The solving of a problem in Heisenberg’s matrix mechanics consists in finding
a scheme of matrices to represent the dynamical variables, satisfying the follow-
ing conditions :—

(i) The quantum conditions, ¢,p, — p,q, = th, etc.
(i1) The equations of motion, gH — Hg = 4hg, or if ¢ involves the time
explicitly gH — Hg -+ 5k 0g/ot = ihyg.
(iii) The matrix representing the Hamiltonian H must be a diagonal matrix.
(iv) The matrices representing real variables must be Hermitian.

(3]

2 U0 2
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The scheme of matrices that satisfies these conditions is not, in general.
unique. If to each of the matrices, ¢ say, we apply the canonical transformation

G = bgb™", (4)

where b is any matrix, the new matrices G will satisfy all the algebraic relations
that the original ones did ; in particular they will satisfy the quantum conditions.
Also, if the elements of the matrix b are not functions of the time, so that we
have G = bgb™", the new matrices will satisfy the equations of motion. Further.
if b commutes with H, the new matrix representing the Hamiltonian will be a
diagonal matrix, and if in addition the elements of the matrices b and b~ satisty
the condition that b («'e”’) and b7 (”’a’) are conjugate imaginaries, each matrix
G will be Hermitian when the corresponding matrix ¢ is Hermitian. Thus when
these conditions are satisfied the new matrices will satisfy conditions (i) to
(iv), and will be just as good as the original ones for representing the dynamical
variables. We shall work out the theory of these transformations, and also
of the more general kind of transformation to a scheme of matrices that need
satisfy only conditions (i) and (ii), which means that b and b~ need satisfy only
the conditions that their matrix elements do not involve the time .
Equation (4) may be written

G (o) = J jb (@) do™ . g (") doct b (o). ()

When we make a transformation of this kind, we can at the same time make
any permutation of the rows of the new matrices &+ and the same permutation
of their columns, without interfering with any of the conditions (i) . . . (iv)
that they satisty. There is thus no one-one correspondence between the rows and
columms of the new wmatrices and those of the original matrices. The notation
used in equation (b) is unsatisfactory because it implies that there is such a
one-one correspondence, the same label o' or (a'w,...o,") being used to
specify a row and column both of the matrices G and of the matrices g. We
therefore modify the notation and write equation (5) thus :—

GESE - By BB LR = G(EE)
= Hb (Foydo' . gaa)de’ .07 (&'E), ()

where the new parameters £, are quite unconnected with the «”s. The
£s may, in fact, take quite different ranges of values from the «”’s, or one could
even have the £7s taking only discrete sets of values while the o”’s can take
continuous ranges of values, or vice versa.
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The question now arises as to how one is to label the rows and columus of the
new matrices (1, 4.e., how is one to assign to each row and corresponding column
a set of numerical values for the parameters £'. To do this in a reasonable
manner one must find those functions of the dynamical ‘variables, B Eonn &
say, that are diagonal matrices in the new scheme of matrix representation,
and then assign to each row and corresponding column the value £ of the
diagonal element lying in that row and column of each &,. The labelling is

thus carried out so as to make the £, have the matrix elements

E(EE)=E/3(8 —&) . 3 —E&)) ... 88 —&/) =& 3(F —&"), (6)

say. The dynamical variables &, are used in the labelling of the rows and
columns of the new matrices in exactly the same way in which the dynamical
variable «, were used in the labelling of the rows and columns of the original
matrices.

The £, must be constants of integration of the system, since their matrix
elements do not involve ¢. Also they must commute with one another, since
diagonal matrices always commute. The &, therefore form a set of canonical
co-ordinates, and they will have a set of canonically conjugate momenta n,, 7, ...
Ny SAY.

The matrices b and b~ satisfy the relations b6~ = 1 and 67'6 = 1, or

J( b(Ew) da' b7 (wg") =58 (£ — &)
and

jb‘-l (CE)dE . bE") = S (o — o).

The matrix elements b (£'a’) and b7 («’’) thus form two mutually orthogonal
and normalised systems of functions, either if they are regarded as functions
of the o”’s specified by values for the parameters &', or if they are regarded as
functions of the £”s specified by values for the parameters «’. Any two such
mutually orthogonal and normalised systems of functions define a transforma-
tion to a new scheme of matrices that satisfies conditions (i) and (ii). If in
addition b (£'a’) and b71(«'¢’) are conjugate imaginaries, the new scheme of
matrices will also satisfy condition (iv). In order that the new scheme may
satisfy condition (iii), the &’s must commute with H. It would follow, since
the £’s are constants of integration, that they must be functions of the original
canonical variables ¢, and p, that do not involve ¢ explicitly.

We shall now simplify the notation a little. In equation (5’) there is no need
to use the different symbols ¢ and G to denote the same dynamical variable
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represented according to the old or the new schemes, since the parameters
(£”and £” or o’ and o”’, as the case may be) show quite definitely to which scheme
any matrix element belongs. We shall therefore use always the same symbol,
¢ for instance, to denote any particular dynamical variable, and shall write its
matrix elements according to the different schemes g ('a’’), g (§'8”). Further
the transformation functions b (§'a') and 67" («'8") are sufficiently defined if
we write them simply as (£'/o’) and («'/&"). We can thus write equation (5')
in the simplified form

~

g(EE") = H(i’/a’) do! . g (o'a") da (@ [E). (5")

We shall make it a rule always to use unprimed letters such as g or &, to denote
dynamical variables (or g-numbers), and primed or multiply primed letters
such as £” and "’ to denote parameters, representing matrix rows and columns,
which can have specified numerical values, and are c-numbers.

The transformation equation (5”) can equally well be written in any of the

forms

ey de gz iz @) =g @)

Joeny @z @) = (@ o g (') = g €

o

7

say, and

[z g@z)= o '"W“V%v=gwmr

say, corresponding respectively to the matrix equations (written in the old

notation)
b1Gb =g, Gb=1bg, b 'G=gb"",

which follow immediately from (4). The expressions ¢ (£'«’) and ¢ («'%’) intro-
duced in equations (7) may be regarded as the elements of two matrices that
represent the dynamical variable ¢ according to two new more general schemes,
in which the rows and the columns of the matrices refer to different things.
There is now no one-one correspondence between the rows and the columns,
so that a diagonal matrix in these new schemes has no meaning. The matrices
with elements (§'/a") and («'/£") are the unit matrices in their respective schemes,
since equations (7) show that these matrices multiplied by a matrix representing
an arbitrary g-number g give matrices representing g.

If we apply successively two canonical transformations with the matrices by

and by, i.¢.,
G = b,gb, ™Y, G = b,Gb, Y,
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the result is the same as the single transformation with the matrix byb,, since
G = bybygby by~ = (baby) g (baby) ™"

Translated into the new notation, this theorem is that if one applies successively

two canonical transformations with the transformation functions (&' /o), (' /&)

and («'/£'), (£'[«’) respectively, the result is the same as the single transforma-

tion with the transformation functions

(/C,/a/) — /((,Cl/gl) dgl (al/al)
and

(“I/Kl) —_ j(ml/&l) dal (a'/’(/)‘

§ 4. Some Elementary Matrices.
The matrix elements of the £’s are given by equation (6). We must now

determine the elements of the matrices canonically conjugate to the &'s It
may be shown that the matrices v, whose elements are defined by

N (B8")=—th 8 (& — &) ..
w8 — ) Y (& —E) 3 G — ) - 3G —8J), (8)
satisfy the canonical relations
Ns — Nshly = Oy E.»r'ns - Y)s&r =0 (1‘ # S)

and
€y — by = th.
The first two of the relations are verified very easily with the help of (2") and (2).
We shall prove the third for the case of a single degree of freedom (u = 1).
The proof is exactly similar for several degrees of freedom, but is not so easily
written down.
For a single degree of freedom we have

EEE)=E3(E -2
n(EE)=—ihd (& —2),

and
so that
(En —18) (") = — ih j EoE - ¥ E -t
N — ) B S — By
" j g —gm .y -
(- £ g B — £
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where the second term has been integrated by parts, and hence

(&n —mE) (E'€") = — ik \{ —&) o (E &) (€ —E)
-3 (il - E.:,”) 3 (E/// . E//)} CZE,/”.

The first term in the integral vanishes since (§" — &) 3 (" — £""’) == 0, and the
second can be evaluated with the help of (2). We now obtain

(En —=E) (£'8") = ih 5 (8'--&")

as required.
The variables canonically conjugate to the &, are not, of course, uniquely
determined when the &, are given, because the variables

0% =, + aF/aEm (9)

where F is any function of the &,, would also be conjugate to the &, when the %,
are. This corresponds to the fact that a matrix representation is not uniquely
determined when one is given the variables £, that are diagonal matrices and
that label the rows and columns, because one can multiply each row (&) by any
function f (') of the parameters &’ and divide the corresponding column by
the same quantity, as this process does not affect the validity of any matrix ‘
equation and does not change the diagonal matrices. This process, though.
does change the v, matrices defined by (8), the new matrices being

81y g (e L&) (e rgeny JE) — [(E)
0" (887) =, (82") e (E'€”) + 0, (88" @)

—_ 424 7)4 E.-/i") af ‘i/ 77

=, (%) + Bt ds, LE) e,
Each term in the summation except the term s = 7 vanishes when multiplied
by 7, (E'€"), since the factor (£'— &,”’) vanishes when multiplied by the factor
3 (&’ — &) that occurs in v, (£'E”’) when s 34 r.  On the other hand the factor
(& —E,”) of the term s = 7 gets multiplied by the factor &' (£, —&,”) of v, (§'8"),
and the product is, by equation (3), just — 3 (£, —&,”). We are thus left with

o (BRI 1y 0]?/ af 77
- rgrr ih &) (g
—n )+ iag,. )

which agrees with (9) when one takes F = A log f.
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For the case of a single degree of freedom one finds readily, with the help of
(2"), that the matrix elements of 5?2 are

,le (ila,,) —_ ('__ ih)z} 8/ (al i!l') dalii 8’ (gl’/ ?‘Il) — (—-—’IJL)Z 8/' (EI__ E-,//)’
and more generally, by induction, that

0" (EE) = (—h)" 3" (§'— &)

Hence, if @ is an arbitrary c-number, the elements of the matrix ¢ are given by
ia g . ‘2 rgr 1 w n ’ 124 ’ 1 !
6 (EE") = X oL (i) (25) = B (ah)" 3% (5 — ) = B (2/— & + o),

with the help of Taylor’s expansion theorem.* The matrix ¢ thus contains
only elements referring to ““ transitions ” in which £ changes by the amount ah,
as is to be expected. Similar results hold for any number of degrees of freedom,
but their proofs are not so easily written down.

§ 5. Transformation Theory.

We shall now consider the transformation between any two matrix schemes,
(£) and («) say, that need satisfy only the conditions (i) and (ii) of § 3. We have

m (€)= —ih & (E/— &) .3 (& — &) .. 8 (&/— &),

and hence

m (o) = j’m (887) de” (87 [a’) = aig/ =
with the help of equations (1) and (1"), and in general
_ 8 (;//Of.
7, (B ) 57

Again we have

() = |3 & — e € = E),
and more generally, if f (£,) is any function of the £, only,

fE) E) = jf (&) 8 (&' — &) d&" (& [o) = f (&) (§'[er).

We shall now show that if f(£,, »,) is any function of the &, and their canonical
conjugates v, defined by (8), that is rational and integral in the v,, then

£ o) (85 = £{&, — i) o), (10)

* The application of Taylor's theorem to the function & (x) appears to be legitimate,
because 8 (z) can be regarded as the limit of a sequence of functions for each of which Taylor’s
theorem holds.
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so that the elements of the matrix representing f in the (§'a’) scheme are given
by a certain operator operating on the transformation function (£'/o). It is
sufficient to prove that if the theorem is true for any two functions, f; and f,,
say, then it is true for their sum f, - f, and their product f; f,. The case of
the sura is trivial. For the product we have

fl Em ”nr> f2 E:ra 7)1‘\ E/O’-/)
J1 ) (Ee”)da” (7 [E7), dE7 . f2 (& ) (E7)

=l
=[5z

= fl (\/‘2:

/ C{//) d/j‘// . (C/,///E)//) dz/l ,f2 (‘\ET//, Zh aa //) (&///a/)

50
ai

:fl(zra —1h a"'g_n/>f2<‘i//: aa )(Z/
as required. In the same way it may be shown that

£ ) @) = (8, it o) (o). (1)

)ﬂ (8 da” ) 2 fal 8 5{‘) (£ fa)

0,

The formula (10) provides us with a powerful way of obtaining the matrix
scheme of representation that makes any specified function of the dynamical
variables a diagonal matrix. Suppose, for instance, that we are given a function
of the £’s and v’s, ¥ (§,, 9,) say, and we want the matrix scheme, («) say, that
makes F a diagonal matrix, i.e., we want to have

F(oo) =F (o). 5 — o),

where T («') is some function of the single set of parameters «’. Formula (10)

shows that
P2, —ib o) (€)= B () (50 = [ (€)") dl” B ('
F () (& /') (11)

This is an ordinary differential equation for (£'/a), considered as a function

of the ¢”s, and its different solutions, when we have found them, are to be
specified by different values for the parameters «’. We can then easily obtain
the («) matrix elements of any dynamical variable f (£, v;r) from the formula

F &) @) = [[ ra NI SR %)

The characteristic values of the differential equation, denoted by T («), are the
diagonal elements of the diagonal matrix representing F.
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If we take the £’s and n’s to be the ordinary ¢’s and p’s of the system at some
specified time, and take F to be the Hamiltonian, then equation (11) is just
Schrodinger’s wave equation, and we get Schrodinger’s method of solving a
dynamical problem on the quantum theory.  T'he eigenfunctions of Schrodinger’s
wave equation are just the transformation functions (or the elements of the trans-
Jormation matriz previously denoted by b) that enable one to transform from the
(q) scheme of matrix representation to o scheme vn which the Hamilionmian is a
diagonal matriz.

For systems in which the Hamiltonian involves the time explicitly, there
will in general be no matrix scheme with respect to which H is a diagonal
matrix, since there will be no set of constants of integration that do not involve
the time explicitly. For such cases we must find a more general wave equation
than equation (11). We shall first show that if g,, denotes the value of each g,
at the time ¢ = =, and if the «’s are a set of constants of integration that can
be expressed as functions of the ¢’s, p’s and ¢ at the arbitrary time ¢ that do not
wnvolve the parameter T, then

H (¢, o) = 'éhaﬁ (g7 [).
T
This condition that the o’s must satisfy is such that
df 7N _@_ 71
L wo) = Z1f @)

‘where f is any function of the p,’s and ¢,’s. Further, if f does not involve ©
-explicitly, we must have ¢A df/dv = f H, — H, f, where H, denotes the Hamil-
‘tonian at time 7. Hence

(fH'r - H'rf) (Q-r’OC/)

—_ ?zhfl«f (q‘r/oc/) — 'Lk [(q‘r//a/r) do:” . Cif_ (OC//O(/)
dr J dr

— h_é@_j A /O(.// o’ f(OC” / @hjaa’: (q'r,,/a .da// . f(CC”OC/)
—_ ’Lkaa J f(q7/q7//) qu// . (q‘r///a-/) . ihj‘a—a—(q'r//“// Ldo”’ f((x” /

o ’bh jf(QT/QT//) qu//. %(QT”/OL %hj “‘*(q-r’/o'//) da// f(“” / ,

since, when f is a function of the p,’s and ¢,’s that does not involve = explicitly,
f(g.” ¢.”") must be independent of . Again, we have

(fH, — H.f) (¢/«) = jf (9-'¢:") dg;” . H, (g:"o) — jH (g-"a") da” . f(o"o').
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!

Comparing these two expressions for (fH, — IH,f)(¢,«’) we see that, since
they hold for any function f, we must have
H, (¢./o) = ik 0 (¢ [a") [O.
If we write ¢ for © and ¢ for ¢., this becomes
H(¢'o) = ih 3 (¢ Jo)fot,
which can be compared with our previously obtained formula

P g’y = —ihd(q'[o")[Og, .
‘We now have

Hlg, — i) () = Higo p) () = g @k, (1)

which is Schrodinger’s wave equation for Hamiltonians that involve the time
explicitly.

The equations of a contact transformation from a set of canonical variables
N &y t0 & set a,, B, may, on the classical theory, be put in the simple form

= 08)0E, B, = OS/0a, (13)

where S may be any function of the £’s and o’s. Jordan* has shown that the
transformation equations on the quantum theory may also be put in this
form provided 8 is written in the form

S = Ef(@)g(“r):

i.¢., all the &’s in the products occurring in S must be in front of all the o’s.
(It is to be understood that this order must be preserved when one performs
the partial differentiations.) This result follows very easily from the present
theory. We have

FE) g () Ea) = Hf (&) (B8 d " (" [o") do” . g () (0t")

o

= |[Fe&ns @ =2y @) do g (0 3 0" — )
=f () g € ),

Zf(E) g () (Ba) =%[ (&) g (@) . (&) (14)
for any sets of functions f (§,) and g («,). Put
(8" Jo') = exp. i8/h,

and thus

* Jordan, ¢ Z. f. Physik,” vol. 38, p. 513 (1926).
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and suppose S to be written in the form X f (£') g («'). We now have

m (€)= —ih g () = 2 @) = as(,‘fi 2. (1)
from (14), provided ab (8, «)/0E, is also written in thé form T f (§) g (a).
Similarly it may be shown that

) = B @)

These equations are just the equations (13) written as relations between matrix
elernents.
§ 6. Physical Interpretation of the Matrices.

To obtain physical results from the matrix theory, the only assumption
one need make is that the diagonal elements of a matrix, whose rows and columns
refer to the &’s say, representing a constant of integration, ¢ say, of the dynamical
system, determine the average values of the function g (,, »),) over the whole
of m-space for each particular set of numerical values for the £’s, in the same way

in which they certainly would in the limiting case of large quantum numbers.
Thus if
g (EE)=9(&).3(E -2

when the £'”’s are nearly equal to the £”s, we assume that ¢ (£') is the average
value of ¢ over all v-space when &, =£/'. In the case when the diagonal
elements of the matrix g are finite without requiring the removal of the factor
3 (8’ —£"), the corresponding assumption is that the diagonal element g (£'%’)
is equal to (2rh) " times the integral of g (£,, 7,) over all y-space when &, = £,

This assumption, of course, enables us to determine also the n-average of
any function of ¢, and further, if g,, g, . . . g, are a set of ¢’s that commute
with one another and are independent functions of the &’s and %’s, we can
determine the n-average of any function of these ¢’s. (The ¢’s must commute,
since if they did not we should find, for instance, that the »-average of g, g,
was different from that of g, g;, and we should not know how to interpret
these averages physically.) This information appears to be all that one can
hope to be able to get concerning the ¢’s as functions of the »’s for specified
numerical values of the &’s.

All this information will be summed up if we can determine the fraction of
the whole of »-space (or the total volune of n-space, when this fraction is zero)
for which each g, lies between any two given numerical values, 1.e., for which
9. <g, <g,”,say. To do this we must find the matrix that represents

3(91— 91)-3(92 — 95) - 3 (9w — 9) = 3(g — 9'),
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say, for brevity. If we thenintegrate this matrix with respect to the parameters
¢, the result, namely,

Sl —g)dy,
~ 4

will be the matrix which represents that function of the ¢’s that equals unity
when g, <g¢,<g,”’, and zero when these conditions are not fulfilled. The diagonal
elements of this matrix will then give the n-average of this function, which
is just the fraction of the whole of v-space for which g," <g,<g,” (or else they
will give the integral of this function over the whole of x-space, which is just
the total volume of n-space for which g," <g, <g.”).

The matrix 3 (¢ — ¢') must satisfy the conditions*

(9 —9/).3(g—9)=38(g—9) (9. —9/)=0
for each #, and

[po—aig =1
It is easily verified that the matrix with elements

S(g—9) L) =(Eg) . (45"

satisfies these conditions. The last of the conditions is obviously satisfied on
account of the orthogonal and normalised properties of the transformation

sty

functions (£'/¢’) and (¢//€"), while to prove the others we have
%3@~w&f3—jﬁﬁmﬂwm(?WN?KU=%&V%@%”
=g (& lg) . (9'IE") =g/ 3(9—9) (E'E"),
S(9—9) g, (E'E") =g/ 3 (9—9) (E'E").

The volume of v-space for which the ¢’s lie between their given numerical
values when &, = £ is now given by

(-g“ zry ’ i
;@m%@@ﬁ)

Jgr

and similarly

We see at once that this volume vanishes unless the range of integration
of each ¢, includes a characteristic value of that g, [1.e., a value that occurs
as a diagonal element of the matrix representing ¢, in the (¢) scheme of matrix

* Where ¢,” is used in a formula as a matrix it means the diagonal matrix, with elements
g,/ (£&") = g.” 8 (& — &), which represents the c-number g,
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representation], since otherwise the transformation functions (§'/g’) and
(¢'/¢’) would vanish throughout the range of integration. This shows that
the characteristic values of any constant of integration ¢ are the values (quantised
or otherwise) that this g-number can actually take. (In particular, the character-
istic values of H are the energy levels of the system.) The symmetry between
£’ and ¢’ in the (&) diagonal element, namely (£'/9’) (¢'/%’), of the matrix
3 (9 — ¢’) enables one to formulate a reciprocal theorem of quantum dynamies,
applying only to the case when the transformation functions (§'/g"), (¢'/E")
are continuous functions of the £ and ¢,” (which implies that the character-
istic values of the £, and g, can take continuousranges of values) as follows :—
The volume of n-space for which &, = £, and ¢, <g,<g,” + ¢, is equal to the
volume of the space of the variables canonically conjugate to the ¢’s for which
9. =g, and £'<E,<E/ - ¢, where the ¢, are small positive c-numbers.
Either of these volumes is, in fact, just (£§'/g') (¢'/E’) €, where ¢ is the product
of all the ¢,.

§ 7. Comparison with Previous Methods.

We shall now show that the present method of obtaining physical results
from the matrix, theory is in agreement with the assumptions formerly used
that the square of the amplitude of the wave function in certain cases deter-
mines a probability. Consider a dynamical system which, when unperturbed,
has a Hamiltonian which does not involve the time explicitly, and to which
a perturbation is applied, causing an additional term, that does involve the
time explicitly, to appear in the Hamiltonian. To find the transition pro-
babilities induced by the perturbation, according to the former method, one
must first obtain the eigenfunctions {(a’), say, for the unperturbed system,
(the o’s being constants of integration of the unperturbed system), and then the
eigenfunctions {;(«'), say, that satisfy the wave equation of the perturbed

' system and have the initial values ¢, («’). One must then expand the {,’s
in terms of the {,’s thus,

(o) = j do (o) da’” o (o"a), (15)

where the coefficients ¢ («’’a’) are functions of the time only. One then assumes
that | c(aa’) | do’’ is the probability of an atom initially in the state («')
being at the time ¢ in a state for which each o, lies between o, and o,” + da,””.

To determine this probability by means of the general method of the present
paper, we must find the transformation functions («'/ey") and (ey’/oy’) Which
connect the values a; of the variables o (which are assumed to be functions of
the p’s and ¢’s that do not involve the time explicitly) at the time ¢ with their
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initial values «,, both the a¢'s and the «,’s being constants of integration of the
perturbed system if we regard ¢ as a specified time. The required probability
would then be equal to

(g fous)) des’ (ond [erg) = 1 (o [og') | # et/

if (@, fo’) and (o fory’) are conjugate imaginaries, as they have to be if both
the () and the («,) schemes of matrix representation satisfy the condition (iv)
of §3. If by ¢; we denote the value of each co-ordinate ¢ at the specified time ¢,
we have

(g¢ Jog") = f (g4 Joed') doni” (o [ory).- (15%)

Here (g4 J«y') is the eigenfunction that satisfies the perturbed wave equation
[of the form (12)], and (g, /o), which depends only on the analytical relations
connecting the o’s with the p’s and ¢’s, is the same function of the ¢,”’s and
a¢’s that (¢, /e,") is of the ¢,”s (the initial ¢’s) and «,’s, and is therefore the
eigenfunction for the undisturbed system written in terms of the variables ¢’
a. Hquation (15') is thus the same as equation (15), and the transformation
functions («f o)) are just the coefficients of equation (15) [which ought really
to have been written ¢ (o e,’)]. Hence the present general method gives
results identical with those of the previous assumption.

Consider now the case of encounters between, say, an electron and an atomic
system. In Born’s treatment of the problem one finds a solution of Schrédinger’s
wave equation consisting of incident plane waves representing the approaching
electron, which waves are scattered by the atomic system. One then assumes
that the square of the amplitude of the wave scattered in any direction deter-
mines the probability of the electron being scattered in that direction, with an
energy given by the frequency of the wave.

To determine this probability by the present method, we must find the trans-
formation function (py’/p;’) that connects the final components of momentum
of the electron, py, with the initial components p;. There is then a probability
(pi |pv’) dpy’ (py’ [or') = | (po’ [pr) | 2dpy’ that the electron will be scattered
with a momentum lying in the range dpy’. If the co-ordinates of the electron
at the time ¢ are z;,* we have

(@ [p) = J (! [py’) dpy’ (py’ [p1)- (16)

# The set of g-numbers a; is understood, of course, to include the co-ordinates of the
atomic system, which ave not explicitly mentioned, in addition to the co-ordinates z; of
the incident electron. In the same way the p; and pr must include variables to fix the
stationary states of the atomic system.
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Here the transformation function (x/py’) is the solution of Schrédinger’s
wave equation appropriate for the case of an incident electron with momentum
py’, and is thus the wave function of Born’s theory. The function (z;'/py’)
on the other hand represents emerging waves corresponding to electrons with
momentum py” (and also in-going waves that we need not consider). Equation
(16) thus gives the resolution of the emerging waves in the eigenfunction (' /p;’)
into their different components, the amplitudes of the various components
being | (py’/py’)|. The present method is therefore in agreement with Born’s
theory. -

If these problems are regarded from the matrix point of view, one sees that
the dynamical variables must be capable of being represented equally well by
matrices whose rows and columns refer to the initial values of the action variables.
(etg Or py in the two cases) or to the final values (¢ or py), and the coefficients
that enable one to transform from the one set of matrices to the other are just
those that determine the transition probabilities.

In conclusion it may be mentioned that the present theory suggests a point
of view for regarding quantum phenomena rather different from the usual ones.
One can suppose that the initial state of a system determines definitely the
state of the system at any subsequent time. If, however, one describes the
state of the system at an arbitrary time by giving numerical values to the
co-ordinates and momenta, then one cannot actually set up a one-one corre-
spondence between the values of these co-ordinates and momenta initially
and their values at a subsequent time.  All the same one can obtain a good
deal of information (of the nature of averages) about the values at the sub-
sequent time considered as functions of the initial values. The notion of pro-
babilities does not enter into the ultimate description of mechanical processes ;
only when one is given some information that involves a probability (e.g., that
all points in n-space are equally probable for representing the system) can one
deduce results that involve probabilities.
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