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Abstract

In the paper Enz and Galasiewicz [Physica C 214 (1993) 239] one finds, for weakly repulsive Bose fluids the Tc — 75
relation which reproduces reasonably well the straight line part of “Uemura plot”. In the formula for superfluid density
ns = ns(t1, t ~ 1) the integrals were presented as power series with respect to 1 = f1(%c) < 1, where dimensionless
parameters ¢, ¢, f. describe interaction, temperature and critical temperature, respectively. Here, the integrals have been
calculated numerically in a wider interval of parameters. Among new results we have found that, while for weak interaction
te > 12 (£2 denotes critical temperature for free bosons), for the stronger one, like in superfluid helium 4, fc < 2. As concerns
curves Ts(ns) we find that in the “straight line” part the slight bending upward is local and very soon begins a much faster
descent, like on the Uemura plot for type I high-T. superconductors. The lowest experimental data for carrier densities s

and m* = Sm, lead to Az ~ 1000 A, £~ 1 A, Te ~ 360 K.

In Ref. [1] the To(n,) relation for weakly interact-
ing charged Bose fluids has been calculated in order
to compare with Uemura experimental relations for
high-T, superconductors [2].

In 1955 Schafroth [3] showed that the charged
non-interacting Bose gas (characterized by coherence
length ¢ — 0, m = 2m,) behaves like a London su-
perconductor exhibiting the Meissner-Ochsenfeld ef-
fect. This effect is described by the London penetra-
tion depth Ay = ng 12 (4777‘1,)—%, where n, denoctes
density of superfluid component (density of supercon-
ducting carriers), rp = ‘f32/2mec2 is named classical
boson radius. In order to examine the Uemura relation
for interacting Bose fluid the Bogoliubov model [4]
of weakly interacting Bose fluid was considered. The
model describes free elementary excitations with the
Hamiltonian:

A=Y e(p)bib, (1
P

e(p) =/ (up)? + (p?/2m)2.

Here u denotes the velocity of sound in the Bose fluid

Wi

u=2—— rna, akgns, (2)
m
where a denotes the scattering length (proportional to
the interaction, i.e. U = Uy ~ a, see Ref. [5]),nis the
density of bosons and n=% the average distance among
bosons. (Formula (2) describes also the velocity of
sound at 0 K for superfluid helium 4 for a = 2.6 A
and n=% =3.6 A, see Ref. [6]).
Like in Ref. [1] we use the following notation:

mut =m(2k)najm = ksTh, t=T/T,
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tl =T1/Tc0! tC ETC/TCO9
s=T1/T=t1]t, sc=11]tc, (3)

where the upper index ”0”

bosons (a =0).

From Eq. (3) weseethatf; ~ g,ie. tjand s =1/t
vanish for non-interacting bosons.

InRef. [1] from thermodynamic relations one finds
expressions for the density of excitations nex(a,T),
the density denoted by ;. (@) describing at T = O non-
condensate density which is different from zero due to
interaction, and for density of condensate n,(a,T) =
ne(t1, t). The square root of the density of condensate
treated as the order parameter should vanish at ¢ =
t.. The equation for the determination of the critical
temperature f¢, of the form n.(#,t,) = 0 also gives
the important relation #; = #;(#.). Moreover from the
flow properties the density of the normal component
nn(a, T) was determined and, finally, the density of the
superfluid component ns(a, T) = ng(t1, ) = ng(tc, t).
This leads to the realization of the determination of
the T. — ns dependence.

The above mentioned densities are expressed by
integrals denoted by I(s) and K(s) involving the
Bose distribution function (e — 1) !, The integrals
I(s), K(s) are presented [ 1] as expansions in powers
of s = t;/¢. For t; one considers only the interaction
interval where one could show that ¢, > tg. Surpris-
ingly, the straight line part of the Uemura plot in the
same accuracy was reproduced reasonably well. How-
ever, it was suggested [1] that in the distinction to
the Uemura plot of type-II superconductors present-
ing downward-bent curves the curves for the family
of interacting Bose fluids show upward bending.

Consideration of some experimental data for the
density of carriers ng as well as replacement of m =
2m, by the effective mass m* gives a possibility for
preliminary estimations of the order of magnitude for
the penetration depth Ay ~ 1000 A, the correlation
length é ~ 1 A and the critical temperature T, ~ 360
K.

The numerical global calculations of the above men-
tioned integrals as functions of s = #, /1, allow one to
get e.g. relations #(#.) and ng(t,t) in wider inter-
vals of parameters than in the case of the series expan-
sion. Namely, at stronger interaction represented by #
one can get f. < tg, which is observed in the case of
superfluid helium 4. Moreover the slight bending up-

refers to non-interacting

ward of ng(tc,t) turned out to be a local one and very
soon turned into the downward bending characteristic
for type-II high-T;, superconductors.

For the density of excitations we have (see notation
in formula (3))

n , 0
ex(: Dog 151;1()/)f)’ 1_1’5:_ "y @
nex (£1,0) =18, (0) =0,
where
oo
1(S)=s%/ sxx L (5)
R

and I(s) > 0. From Egs. (14) and (42) of Ref. 1]
we have

= -———t,% ~ O.Zt%. (6)

n 3I(0)
The density of condensate n.(2;,¢) is expressed by

re(tt) | V2 3 al(n/1)
no o 310)" 1(0)
Mint ~ Nex
=] =
n n
ne(n,0) V2 3
T KAL)

As we mentioned above the critical temperature f,
is determined by

nC(tlitC) =09 (8)

(see also Ref. [7]).

The integral I(s) was calculated using the 8-points
self-adaptive Newton-Cotes method and the Eq. (8)
solved numerically to find the relation between #; and
t.. The resulting curve £.(¢;) is presented in Fig, 1.

The careful numerical analysis allows us also to
make the statement, that n, near ¢, tends to zero like

(8a)

with the critical index 8 = 0.5, like for the free boson
system. Formula (8) and Fig. 1 show that by con-
sideration of densities like n, n it is not possible to
change the critical temperature ¢, at constant interac-
tion strength #1.
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Fig. 1. The plot of the dependence f¢ (1) obtained as the solution of
the Eq. (8). The dashed curve represents the analytical dependence
obtained in Ref. [1].

Fig. 1 shows that for weak interaction #, > 13 = 1.
For stronger interaction we have f, < 12 = 1. The
latter situation is quite similar to that of liquid helium 4
(strong interaction). Namely, for the molecular mass
of helium mye and the density of the liquid state nye,
the critical temperature of an ideal Bose liquid is

2%7r§h2 n2

¢ —He =3.13K 9)
kBI3 (0) mHe

whereas

T,=T,=2.18K < T_. (10)

In the case of determination of #; for superfluid helium
4 (see Eq. (3) and data for a and n=13 given before
this formula) one can use formally Eq. (6) present-
ing the fraction of the density of particles out of the
condensate (at T = 0 K). With the help of Eq. (9)
we have #; = 2.69 and

w:lZ%. (11)
n

Bt _ 0.88 = 88%,
n
which is close to the data given in Ref. [7]. Although
the model considered here is applicable only to the
weak interacting systems, the values obtained for he-
lium 4 are not very bad. Namely, from the temper-
atures (9) and (10) we get £, = 0.696... and from
the dependence #.(#1) (see Fig. 1) we found the cor-
responding interaction parameter ¢; = 2.6 and finally
Eq. (6) gives ni/n = 84% — only a few percentages
below experimental data. On the other hand, #; = 2.69

corresponds (Fig. 1) to #; = 0.58 which gives Ty =
t.T0=182K.

Let us also stress that the region of the maximum
of the plot z.(z1) is quite broad, i.e. the large critical
temperature around maximum is attained for a broad
range of interactions around the value t%max) ~ 0.87
(the corresponding critical temperature is ${m)
1.396). Furthermore we mention that for z, > 1 there
are two values of #; being the solution of Eq. (8).

The density of the normal component n, was deter-
mined [1] from the flow properties

mn,0) _ 10/ 2 — K(t/1)
L 1(0) 3Vt 0y
_nex 2 — K(1/1)
=% T 3VRITI)
0
M:ﬁ:@_ (12)
n n

Here the integral K(s) is defined by the formula:

o0}

Km”/ dx VVE+1-1(VxF1+2)
0 ol 2(Vx2 +1)3 ‘

(13)

and K(s) > 0. Formula (12) shows how the degener-
acy (nl =r0 ) in case of noninteracting bosons is re-
moved when the interaction and thereby ¢#; is different
from zero. Together with inequality rex > 1, (t # 0)
this situation is presented in Fig. 2.

Having n, given by Eq. (12) one gets from relation
n—ny = ng the expression for the density of superfluid
component xg

ns(t, ) o I(n/t) 2 —K(u/t):
P ’{*/; 10y "3V 0 }
_ne(n/t) | V2 K(t1/1)
=T T30 d+3 ‘/_1 100)
(14)

and because K(s) > 0 the inequality

ns(t,t) nc(tl/t)
n n

is valid, see Fig. 3. Fig. 3 illustrates this situation in
the form of ¢, —ne, t. — s relations. We see that in
consequence the current density of condensate should
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Fig. 2. An example of the inequality "= > 2 for three values of

the temperature ¢ = 0.1, 0.7, 1. The curves nex are dashed and

ny, are solid lines.
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Fig. 3. This figure illutrates the inequality 2+ > % for two values
of the temperature ¢ = 0.3, 0.7. The curves tc(ns) are drawn solid,
and t¢(nc) are dashed. The gap between ne (left) and ng (right)
is increasing with #1. The curves are clipped in such a way, that
only the physical region of the nc is visible. For the sake of place
the notation does not include denominators on the horizontal axis.

be smaller than the current density of the superfluid
component: 7, is a fraction of #s.

So, from Egs. (12) and (14) we see that integral
K(11/t) describes the difference between n, and nex
as well as the difference between ng and n.. We have
further the relations:

ns(t,0) _, _me(t,0) V2 3
n n 31(0)
N 0) 1o ng(t). (15)

n n

Fig. 4. This figure presents the temperature dependence of ng and
ny as fraction of n for 1y = 0.1, 0.2, 0.3, The plots of ny/n
are dashed. The additional curve for £y = 0.87 corresponds to the
ni@%(t) for which f¢ reaches maximum,

Formula (14) shows @H_at"thg: degeneration described
by Eg. (15) is removed in the case when interaction

and thereby ¢, is different from ié;o, From Eq. (8)
it follows that n. considered as the order parameter,

vanishes exactly for ¢ = f. On the other hand from
Fig. 2 (together with Fig. 1) it follows that for t —
te,ty = n (r=ex,n), but n(t;) # n.The reasonis _
that the non-interacting quasi-particle description (1)
like phonon-roton in Hell (see Ref. [5, 8]) is not

valid in the vicinity of T;. Fig. 4 presents values of n;
and n, as fractions of the boson density n for different
temperatures and interactions. As we will see below,
the relation of n, to n will be of special interest for us,
From Fig. 4 it follows that for weak interaction and
fort~1(ie. T~T2), ng— 0andn, — n

Fig. 5 presents the “Uemura plot”, ie. t.(ns)
dependence for weakly interacting Bose fluids. It re-
produces the straight part of the plot with local slight
upward tendency (i.e. Fig. 1 of Ref. [1]) but in the
range of higher ¢, for weakly interacting Bose fluids,
like Uemura for high-T. superconductors, we get a
downward-bent curve. As it is seen from this figure,
for any temperature ¢ there is a particular value of
n@*(¢) for which the f; reaches its maximal value
1.396... — for ng > nf™* (“overdoping” ?) the crit-
ical temperature begins to decrease. The plot of the
quantity n"**(¢) versus ¢ is also shown in Fig. 4 —
with increasing ¢ corresponding ni"**(t) decreases,
which was to be expected.

As follows from the formula for Az (see in the text
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Fig. 5. The Uemura plots of the tc(ns) dependence for three
values of the temperature £ = 0.81, 1.0, 1.21. These values of ¢
are choosen to be the same as on Fig. 1 in Ref. [1]. The dashed
lines represent the fc(ns) dependence according to Eq. (50) from
Ref. [1].

formula before formula (1)) it depends on the carrier
density ng and the boson mass. On the other hand the
critical temperature (see formula (9)) depends on the
boson density » and the boson mass m.

In Ref. [1] the boson mass has been taken to be
m = 2m, and this choice has no influence on the shape
of the curve T — ng we were interested in. However, a
band structure and the renormalization effects lead ac-
tually to the effective mass m* = m > 2m,. According
to Ref. [10] we have e.g. for cuprate superconductors
2.4 < m*[m, < 12+ 2.4 (the upper limit is rather an
exception) with the carrier densities within the limits
(0.00057 +£11)A~3— (0.0169 + 3.4)A3. As yet the
highest ratio m*/m, = 23 + 5 is for TaS3(Py)1/2. In
Ref. [11] one finds that a typical value of the effective
mass is m* = Sm,. Formula (9) shows that too small
masses and too high bason densities can lead to the
nonrealistically high critical temperatures TO and Te.
(For weak coupling #; ~ 0.2+ 0.3 formula (8) gives
(see also Fig. 1) . ~ 1.26 + 1.3, taking ¢, = 1.28,
we have T, = £, T2 = 1.2877).

Fig. 4 shows that for 1; ~ 0.1+0.3 (z ~ 1) we
have for n, = 0.5n (n is considered as the carrier den-
sity). We take the value for n, from the lower limit of
the experimental estimations of carrier densities from
Ref, [11] e.g. 1y = 0.0002 A% — n = 0.0004 A3
and take at the same time m = 5m,. We get Ay ~
1000A, T, = 1.28T2 ~ 360K. The formula (1.19)

of Ref. [9] v/Ar/2mec < £ < 4/2A1/2mec gives the

possibility to estimate the coherence length ¢ when
the penetration depth and the boson mass is known.
For A, ~ 1000A and replacements 2m, — m* = Sm,
we have &€ ~ 1 A,

For weakly interacting Bose fluids some important
results were obtained on the basis of the here justi-
fied weak-coupling expansion (Ref. [1]). The crucial
result is the determination of the straigth part of the
Uemura plot. From the weak coupling data the rela-
tion ng ~ 0.5x was estimated. In the case of extension
of calculation to larger values of the coupling con-
stant the data obtained formally for “He, namely for
the density of condensate at 7 = 0 and for T are quite
close to the experimental values. Finally, the Uemura
plot 7. (ns) is reproduced in a proper way beyond the
power series expansion.

The choice of the values for ns and m* from the
experimental data leads to the quite reasonable values
for Ay, & and also for Tg.

For real bosons like *He atoms formula (9) de-
scribes the critical temperature. According to Ref.
[10] the masses m* of “complexes” which we con-
sider as bosons are much smaller than mye ~ 4000m,
(m* < mye). In this case in order to get from Eq.
(9) reasonable critical temperature the boson density
should be small. In consequence the carrier density
ns < n should be small, like carrier density observed
experimentally for HT.S.

Finally it is worth to pay attention to the paper “Pen-
etration Depth Measurements of 3D XY Critical Be-
haviour in YBa;Cu3O¢.45 Crystals” (Ref. [12]). In
this paper the measured critical index for 1/A2(T) ~
(1= %)% ~ ng ~ ne is y = 0.33. This is consistent
with the critical scaling in the universality class of the
three dimensional XY model. It is also consistent with
the critical behaviour of the density of the superfluid
component r; and the density of the condensate n, for
helium 4 (see e.g. Ref. [5], Section 28, and Sections
148,149 of Part 1). The consideration of the boson sys-
tem in the present paper corresponds to a mean-field
theory and therefore the exponent in (8a) is 8 =0.5.
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