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It is shown that the formula expressing the n-th iteration of the Cat Mapping by the
initial one involves the elements of the Fibonacci sequence,

In this short note we are going to express the value of the n-th iteration of the Cat
Mapping by the initial one. It furns out that this connection involves the even
elemerits of the Fibonacci sequence. Fibonacci numbers are frequently met with the
circle mapping, see e.g. [3, 4, 7]. o

Let us recall that the Cat Mapping transforms the two-dimensional torus into
itself and is given by the formulas

Xp+1=X,+y,mod 1, (1a)
Yne1 =X, +2y,modl, n=0,1,... (1b)

The above equations define one of the most popular dynamical toy modéls, which
belongs to the family of Anosov difftomorphisms. It was invented by Arnold [1] as
the illustration of many properties shared by dynamical systems. For example
the transformations (1) are: area preserving, ergodic, mixing and they possess
positive Kolmogorov entropy. The striking example of action of the transformation
(1) is given by a series of pictures in the article by Crutchfield et al. [2]. In particular
these figures show the mixing property of (1) as well as the periodicity of rational

points under its action. (Only for irrational x, y the orbits are nonperiodic

and fill out the whole torus.) The question of the existence of periodic orbits was

recently related to the nineteenth century arithmetic by Vivaldi [8] and Percival and
Vivaldi [6]. :

We are going to show the connection between Fibonacci numbers and the Cat’
Mapping. First of all let us write (la, b) in the matrix form: T

(’“’“) = T(""), mod 1, Q)
Yn+1 Yn
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11
- 3
T_(1 2>. 3

The determinant of the above matrix is equal to 1: det T= 1. Th%s is the reason that
the Cat Mapping is area preserving—an analog of the Liouvﬂ}e theorqm holds.-
Let us mention that for an integer a and arbitrary x the following identity holds:

(a(axmod 1))mod 1 = (a>x)mod 1. @

Due to this identity we can iterate (2) and write it in the form

(x,,) =T" (x0> mod 1. &}
Vn Yo

The matrix T is symmetric and can be diagonalized by means of the following

matrix A:
'1 V1145 V1=14/5

where

A=—= , (6)
\/i .__1‘/14.\/5 o 1“1/\/g
4 .
ATA=1,"
detd =1,

where ¢ is the Golden Mean: ¢ =3}(1 +\/§). The eigenvalues of T are
A= %(3+\/§), A, = 1/4,, so the formula (5) can be written in the following form:

X\ _ (420 ,r(%o 7
(yn>._A(0 Aq)A (y0>modl. M

Using the expliéit form (6) of the matrix A the following expression for (x,, y,) in
terms of (x,, y,) can be derived from the above formula:

1 11 1) ]
I I LT L - mod1, (8a)
, ﬁ[(q, ”+¢1)xo+( )7
1 At 1 +| @A" -i--1~i Vo |mod 1 (8b)
yn = ﬁ —/1” xO q) (Plln 1) ’

where we denoted A=4,=(3 +\/§)/2 = 1+¢. We are going to calculate.' the
coefficients in front of x, and y, in the formulas (8a, b). Let us recall that A satisfies

the eigenvalue equation for the matrix (3):
A2—-3)+1=0. 9)
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Using (9) we can calculate A3:
B =131-1)=81-3.

It is easily seen that repeating the above trick we can express the n-th power of A as
the following linear combination:

I =al+b,. (10)

Rewriting the above formula for n+ 1 and using (9), we obtain that the coefficients a,
and b, are given by the following iterations:

Ayyq = 3a,+b,, (11a)
by+1 = —a,, (11b)

where initial values are a, = 1, b, = 0. Due to the relation (11b) the n-th power of
A can be expressed by the elements a, alone:

" =ald—a,_,, 12
where the sequence {a,};>, is given by the iteration
Gpiy =3a,—a,-4, n 21 (13)

now with g, =0, g, = 1.
Let us remark that as 1/4 is also a solution to the equation (9), the above
reasoning can be applied mutatis mutandis to 1/A giving the result

1 i
F = anz-an—l' (14)

The selfconsistency of (12) and (14) leads to the following identity for a,:
a—3a,a,_ ¥ya?_,=1. (15)

In virtue of the formulas (12) and (14) the coefficients in front of x,, y, in (8a, b)
can be expressed by means of a, and finally we obtain

%, = [(@y=n-1) Xo+a,y,]mod 1, (16a)
Yo = [a,%0+(2a,—a,1) y;]mod 1. (16b)

We can see now that the condition (15) expresses the fact that the determinant of the
above transformation is equal to 1. It remains to be shown that elements of the
sequence {a,};%, are equal to the even elements of the Fibonacci sequence {F 1.
Let us recall (see e.g. [5, §1.2.8]) that the Fibonacci numbers are given by the

following iteration:

Fn+2=Fn+l+Fm . (17}
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with the initial values Fy =0, F, = 1. It can be easily proved by the method of
mathematical induction that F,, fulfils the same recurrence formula as a, does:

Foni1=3F2,—Fan—3.
Using the initial conditions it follows that a, = F,, and finally we caxi write
X, = [(F2n—F2y-2)Xo+ F2,yo] mod 1, (18a)
Va = [FanXo+(2F 2n—F24-2) yoJmod 1. - (18b)
Finally, using the definition (17) the formulas (18) can be written in the form
Xy = (F2n-1%o+ F2,y0)mod 1,
Yo = (FanXg+Fan+1yo)mod 1.
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The book Chaotic Dynamics: an Introduction by G. L. Baker and J. P. Gollub
an intelligent presentation of the most important ideas in the theory of nonline
dynamics and chaotic phenomena. Written with a junior undergraduate reader
mind, the text appeals mainly to his physical intuitions, while precise mathematic
technique is left aside, except for the necessary minimum. The prerequisites i
studying the book are listed in the Preface: they include elementary multivarial
calculus, linear differential equations and introductory physics. In addition, Chap'
2 contains a brief presentation of basic mathematical ideas and notions such as phe
space, Poincaré section, Fourier analysis of the time series etc.

Tt is the original idea of the authors to introduce all the aspects of chaotic moti
through the detailed study of the driven damped pendulum,

mlf+y0 + Wsin 8 = A cos(wp?).

Different regimes of the pendulum motion are carefully presented in a series
computer-generated pictures including phase portraits, Poincaré sections, basins
attraction, power spectra of the corresponding time series and bifurcation diagrar

The book is supplemented with a software package available on a 5} in. diske
at some extra cost (the complete source code of the programmes is given in A
pendix B). The reader can use the software to run all the simulations himself,

" generate the graphics and the animated images of the pendulum in motion, to p!

with parameters etc. Although we did not have a chance to test the software itself,
would like to point out the novelty of the authors’ idea to enrich the text W
computer demonstrations and experiments to be run by the reader. Numerc
exercises at the end of each chapter refer to the software and suggest furtl
simulations and experiments: the reader is expected to draw his own conclusic
from the results and to discover some important facts by himself. The educatio:
value of such an approach is unquestionable.
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